Result Details
LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors
        BREJCHA, J.; LUKÁČ, M.; HOLD-GEOFFROY, Y.; WANG, O.; ČADÍK, M. LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors. In Computer Vision - ECCV 2020. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland AG, 2020. p. 295-312.  ISBN: 978-3-030-58525-9.
    
                Type
            
        
                conference paper
            
        
                Language
            
        
                English
            
        
            Authors
            
        
                Brejcha Jan, Ing., Ph.D., DCGM (FIT)
                
Lukáč Michal, FIT (FIT)
Hold-Geoffroy Yannick
Wang Oliver
Čadík Martin, doc. Ing., Ph.D., DCGM (FIT)
        Lukáč Michal, FIT (FIT)
Hold-Geoffroy Yannick
Wang Oliver
Čadík Martin, doc. Ing., Ph.D., DCGM (FIT)
                    Abstract
            
        We introduce a solution to large scale Augmented Reality for outdoor scenes by registering camera images to textured Digital Elevation Models (DEMs). To accommodate the inherent differences in appearance between real images and DEMs, we train a cross-domain feature descriptor using Structure From Motion (SFM) guided reconstructions to acquire training data. Our method runs efficiently on a mobile device and outperforms existing learned and hand-designed feature descriptors for this task.
                Keywords
            
        augmented reality, descriptor matching, cross domain matching, camera calibration, visual localization, structure-from-motion, terrain model, digital elevation model, photograph, computational photography
                URL
            
        
                Published
            
            
                    2020
                    
                
            
                    Pages
                
            
                        295–312
                
            
                        Proceedings
                
            
                    Computer Vision - ECCV 2020
                
            
                    Series
                
            
                    Lecture Notes in Computer Science
                
            
                    Volume
                
            
                    12374
                
            
                    Conference
                
            
                    European Conference on Computer Vision 2020
                
            
                    ISBN
                
            
                    978-3-030-58525-9
                
            
                    Publisher
                
            
                    Springer Nature Switzerland AG
                
            
                    Place
                
            
                    Cham
                
            
                    DOI
                
            
                EID Scopus
                
            
                    BibTeX
                
            @inproceedings{BUT168487,
  author="Jan {Brejcha} and Michal {Lukáč} and Yannick {Hold-Geoffroy} and Oliver {Wang} and Martin {Čadík}",
  title="LandscapeAR: Large Scale Outdoor Augmented Reality by Matching Photographs with Terrain Models Using Learned Descriptors",
  booktitle="Computer Vision - ECCV 2020",
  year="2020",
  series="Lecture Notes in Computer Science",
  volume="12374",
  pages="295--312",
  publisher="Springer Nature Switzerland AG",
  address="Cham",
  doi="10.1007/978-3-030-58526-6\{_}18",
  isbn="978-3-030-58525-9",
  url="https://link.springer.com/chapter/10.1007/978-3-030-58526-6_18"
}
                Projects
            
        
        
            
        
    
    
        Deep-Learning Approach to Topographical Image Analysis, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIZ19004, start: 2019-07-01, end: 2022-06-30, completed
                
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-20-6460, start: 2020-03-01, end: 2023-02-28, completed
        Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-20-6460, start: 2020-03-01, end: 2023-02-28, completed
                Research groups
            
        
                Computational Photography Group - CPhoto@FIT (RG CPHOTO)
            
        
                Departments