Course details

VHDL Seminar

IVH Acad. year 2018/2019 Summer semester 4 credits

Current academic year

Basic VHDL language constructs, lexical description, VHDL source code. Data types, data objects, data classes, data objects declaration. VHDL language commands. Advanced VHDL features, VHDL 93. Delay modelling, time scheduling in VHDL. Combinational circuits modelling, "don't cares", tri-state-output circuits. Sequential circuits modelling, Mealy and Moore automata. Models testing, test benches. Designing at algorithm, register-transfer, and gate levels. Modelling for synthesis. Semantics for simulation and synthesis, delay in model. Programming techniques, shared components, flattening and structuring. Case studies of complex digital circuits: UART, RISC processor, FIR filter.

Guarantor

Course coordinator

Language of instruction

Czech, English

Completion

Credit (written)

Time span

  • 26 hrs seminar
  • 13 hrs projects

Assessment points

  • 100 pts projects

Department

Instructor

Subject specific learning outcomes and competences

The student should be able to describe and simulate complex digital systems using VHLD language constructs including both behavioral and structural description. This course is recommend as a co-requisite for INC and INP.

Learning objectives

To give the students the knowledge of syntax and semantics of hardware description language VHDL, its use for modelling, simulation, and synthesis of complex digital systems, as well as the skills in VHDL programming techniques and the use of professional design tools.

Why is the course taught

The VHDL Seminar supports INC and INP courses and is recommended to deepen the knowledge of VHDL language and issues connected with advanced hardware design. Students will receive a more detailed knowledge of VHDL not only theoretically but also practically as there are not only practical demonstrations but also a project on FITkit, development board equipped with programmable gate array XILINX. Mastering the hardware description language is a key element in the successful and efficient design of FPGA-based systems having a dominant position especially in the field of high-performance computing (network operations acceleration, acceleration of digital signal and video processing, acceleration of bioinformatic tasks, cryptographic applications, etc.), where the acceleration platforms based on FPGAs can achieve significant speedup gain at minimum power levels compared to the conventional parallelization techniques based on CPUs and GPUs. Knowledge of hardware description techniques enables students to actively engage in a number of research projects in the area of network data and security processing.

Prerequisite knowledge and skills

Basic skills in programming and digital design, fundamentals of Boolean algebra.

Study literature

  • Jasinski, R.: Effective Coding with VHDL: Principles and Best Practice. The MIT Press. 2016.
  • Pedroni, V. A.: Circuit Design and Simulation with VHDL (Second Edition). The MIT Press. 2011
  • Armstrong, J.R. - Gray, F.G.: VHDL Design Representation and Synthesis, 2nd edition, Prentice Hall, ISBN 0-13-021670-4, 2000
  • Chang, K.C.: Digital Design and Modeling with VHDL and Synthesis, IEEE Computer Society Press, 1997
  • Armstrong, J.R. - Gray F.G.: Structured Logic Design with VHDL, Prentice-Hall, 1993

Syllabus of seminars

  1. Moderní návrh hardware (design flow), jazyky pro popis hardware (VHDL, Verilog), FPGA, úvod do číslicových systémů.
  2. Základní konstrukce jazyka VHDL, lexikální popis, zdrojový text ve VHDL.
  3. Datové typy, datové objekty, třídy objektů, deklarace datových objektů.
  4. Příkazy jazyka VHDL
  5. Pokročilé vlastnosti jazyka VHDL, zpoždění a plánování času.
  6. Popis kombinačních obvodů, třístavové obvody.
  7. Popis synchronních sekvenčních obvodů, popis konečných automatů, asynchronní sekvenční obvody.
  8. Modelování obvodů a událostně řízená simulace, testování obvodů a návrh testů, funkční simulace (ModelSIM), co-simulace.
  9. Syntéza obvodů, omezení (constraints), syntéza pro FPGA, časová simulace.
  10. Pokročilé techniky (pipelining, retiming, sdílení komponent, flattening a strukturování)
  11. Příkladová studie komplexních obvodů: řízení maticového LED displeje, UART, ETHERNET
  12. Příkladová studie komplexních obvodů: RISC procesor
  13. Obvody FPGA, využití masivního paralelismu v kryptografii (RC4, DES), DNA-alignment

Syllabus - others, projects and individual work of students

Individual project dividend into several parts.

Progress assessment

Project supported by the written technical report in English language.
Exam prerequisites:
Class credit is gained when minimal total score of 50% points is gained during a semester.

Exam prerequisites

Class credit is gained when minimal total score of 50% points is gained during a semester.

Course inclusion in study plans

  • Programme IT-BC-3, field BIT, 2nd year of study, Compulsory-Elective group T
Back to top