Course details

Physical Optics

FYO Acad. year 2007/2008 Summer semester 5 credits

Current academic year

Electromagnetic waves and light. Fresnel's equations. Reflection at dielectric and metallic surfaces, polarization. Coherence, interference from thin films. Diffraction by 2D and 3D structures. Holography. Transmission of light through media. Dispersion, absorption. Scattering. Thermal radiation. Elements of image-forming systems. Analytical ray tracing. Matrix concept. Errors in image forming. Quantum mechanical principles of radiation. Spectra of atoms and molecules. Physical statistics. Photon. Stimulated and spontaneous emission. Lasers. The basis of luminiscence. Radioactive radiation.

Guarantor

Language of instruction

Czech, English

Completion

Examination

Time span

  • 26 hrs lectures
  • 13 hrs exercises
  • 13 hrs projects

Department

Subject specific learning outcomes and competences

The students will learn the basic principles of the physical optics needed for computer graphics. They will extend their general knowledge of optics and get acquainted with the modern optics. They will also learn how to apply the gathered knowledge on real tasks. Finally, they will get acquainted with further physics principles important for computer graphics.

Learning objectives

To learn the basic principles of the physical optics needed for computer graphics. Extend the general knowledge of optics and get acquainted with the modern optics. To learn how to apply the gathered knowledge on real tasks. To get acquainted with further physics principles important for computer graphics.

Prerequisite knowledge and skills

There are no prerequisites

Study literature

  • Schroeder, G.: Technická optika, SNTL, Praha, ČR, 1981

Fundamental literature

  • Hecht, E., Zajac, A.: Optics, Addison-Wesley, Reading, UK, 1977, ISBN 0-201-02835-2
  • Saleh, B. E. A, Teich, M. C.: Fundamentals of Photonics, Wiley 2007, USA, 978-0-471-35832-9
  • Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, Willey, New York, USA, 1997, ISBN 0-471-10559-7

Syllabus of lectures

  • Electromagnetic waves and light.
  • Light at the interface of two media, Fresnel's equations. Reflection at dielectric and metallic surfaces, linear and elliptical polarization. Polarizers.
  • Coherence. Interference from thin films. Interference filters. The Fabry-Perot interferometer.
  • Diffraction by edges, slits, gratings and 2D and 3D structures. Holography.
  • Transmission of light through media. Dispersion, spectrometers, rainbow. Absorption. Scattering.
  • Thermal radiation. Energy and light quantities. Receptors, human eye. Spectral sensitivity of receptors. Filters and color dividers.
  • Elements of image-forming systems. Mirrors, prisms, lenses, the microscope, the telescopes. The Fermat principle.
  • Analytical ray tracing. Matrix concept. Aperture and field stops. Magnification, resolving power. Errors in image forming. Notes on fiber optics.
  • The quantum mechanical concept of radiation. The wave function, the Schroedinger equation, the uncertainty principle. The tunnel effect.
  • Energy levels, the Pauli exclusion principle, energy bands. Spectra of atoms and molecules. Selection rules.
  • Physical statistics. Photon. Stimulated and spontaneous emission. Inversion population. Lasers.
  • The basics of luminiscence, phosphors, fluorescence, phosphorescence.
  • Radioactive radiation.

Progress assessment

Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.

Controlled instruction

  • Mid-term exam - up to 10 points
  • Project - up to 30 points
  • Written exam - up to 60 points
Back to top