Result Details

Critical oscillation constant for Euler-type dynamic equations on time scales

VÍTOVEC, J. Critical oscillation constant for Euler-type dynamic equations on time scales. APPLIED MATHEMATICS AND COMPUTATION, 2014, vol. 243, no. 7, p. 838-848. ISSN: 0096-3003.
Type
journal article
Language
English
Authors
Vítovec Jiří, Mgr., Ph.D., RG-2-02 (CEITEC), UMAT (FEEC)
Abstract

In this paper we study the second-order dynamic equation on the time scale $\T$ of the form $$(r(t)y^{\Delta })^\Delta + \frac{\gamma q(t)}{t\sigma(t)}y^{\sigma}=0,$$ where $r$, $q$ are positive rd-continuous periodic functions with $\inf\{r(t),\, t\in\T\}>0$ and $\gamma$ is an arbitrary real constant. This equation corresponds to Euler-type differential (resp. Euler-type difference) equation for continuous (resp. discrete) case. Our aim is to prove that this equation is conditionally oscillatory, i.e., there exists a constant $\Gamma>0$ such that studied equation is oscillatory for $\gamma>\Gamma$ and non-oscillatory for $\gamma<\Gamma$.

Keywords

Time scale; Dynamic equation; Non(oscillation) criteria; Periodic coefficient

URL
Published
2014
Pages
838–848
Journal
APPLIED MATHEMATICS AND COMPUTATION, vol. 243, no. 7, ISSN 0096-3003
DOI
UT WoS
000340563800080
EID Scopus
BibTeX
@article{BUT108316,
  author="Jiří {Vítovec}",
  title="Critical oscillation constant for Euler-type dynamic equations on time scales",
  journal="APPLIED MATHEMATICS AND COMPUTATION",
  year="2014",
  volume="243",
  number="7",
  pages="838--848",
  doi="10.1016/j.amc.2014.06.066",
  issn="0096-3003",
  url="http://www.sciencedirect.com/science/article/pii/S0096300314009096"
}
Projects
Excellent Young Researchers at BUT, EU, OP VK - Oblast podpory 2.3 - Lidské zdroje ve VaV, EE2.3.30.0039, start: 2012-07-01, end: 2015-06-30, completed
Departments
Cybernetics in Material Science (RG-2-02)
Department of Mathematics (UMAT)
Back to top