Result Details

Bayesian comparison of Kalman filters with known covariance matrices

DOKOUPIL, J.; PAPEŽ, M.; VÁCLAVEK, P. Bayesian comparison of Kalman filters with known covariance matrices. In AIP conference proceedings. AIP conference proceedings. 2015. p. 1-4. ISBN: 978-0-7354-1287-3. ISSN: 0094-243X.
Type
conference paper
Language
English
Authors
Dokoupil Jakub, Ing., Ph.D., RG-2-02 (CEITEC)
Papež Milan, Ing., Ph.D., RG-2-02 (CEITEC), UAMT (FEEC)
Václavek Pavel, prof. Ing., Ph.D., RG-2-02 (CEITEC), UAMT (FEEC)
Abstract

A growing-window recursive procedure for model comparison is proposed based on the Bayesian inference principle. This procedure, compared to the batch one, is capable of processing unlimited increases in the uncertainty of the initial parameter settings, which is a characteristic of Kalman type algorithms. The present paper applies the suggested procedure to assess the degree of support for the state point estimates generated by multiple Kalman filters. We investigate a case where the covariance of the measurement noise and the normalized covariance matrix of the process noise are both available.

Keywords

Kalman filter, Bayesian methods, model comparison

URL
Published
2015
Pages
1–4
Journal
AIP conference proceedings, vol. 1648, ISSN 0094-243X
Proceedings
AIP conference proceedings
Conference
ICNAAM 2014 - International Conference of Numerical Analysis and Applied Mathematics
ISBN
978-0-7354-1287-3
DOI
UT WoS
000355339700074
BibTeX
@inproceedings{BUT117758,
  author="Jakub {Dokoupil} and Milan {Papež} and Pavel {Václavek}",
  title="Bayesian comparison of Kalman filters with known covariance matrices",
  booktitle="AIP conference proceedings",
  year="2015",
  journal="AIP conference proceedings",
  volume="1648",
  pages="1--4",
  doi="10.1063/1.4912383",
  isbn="978-0-7354-1287-3",
  issn="0094-243X",
  url="http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4912383"
}
Projects
Excellent Young Researchers at BUT, EU, OP VK - Oblast podpory 2.3 - Lidské zdroje ve VaV, EE2.3.30.0039, start: 2012-07-01, end: 2015-06-30, completed
Departments
Cybernetics in Material Science (RG-2-02)
Department of Control and Instrumentation (UAMT)
Back to top