Result Details
An Approach to ANFIS Performance
DALECKÝ, Š.; ZBOŘIL, F. An Approach to ANFIS Performance. In Advances in Intelligent Systems and Computing. Mendel 2015 Recent Advances in Soft Computing. Brno: 2015. p. 195-206. ISBN: 978-3-319-19823-1.
Type
conference paper
Language
English
Authors
Dalecký Štěpán, Ing., DITS (FIT)
Zbořil František, doc. Ing., CSc., UAMT (FEEC), DITS (FIT)
Zbořil František, doc. Ing., CSc., UAMT (FEEC), DITS (FIT)
Abstract
The paper deals with Adaptive neuro-fuzzy inference system (ANFIS) and its performance. Firstly, ANFIS is described as a hybrid system based on fuzzy logic/sets and artificial neural networks. Subsequently, modifications of ANFIS are proposed. The aim of these modifications is to improve performance, accuracy or reduce computational time. Finally, experiments are presented and findings are assessed.
Keywords
ANFIS, artificial neural network, fuzzy sets, fuzzy logic
Published
2015
Pages
195–206
Proceedings
Advances in Intelligent Systems and Computing
Series
Mendel 2015 Recent Advances in Soft Computing
Conference
21st International Conference on Soft Computing — MENDEL 2015
ISBN
978-3-319-19823-1
Place
Brno
DOI
UT WoS
000364847700016
EID Scopus
BibTeX
@inproceedings{BUT119798,
author="Štěpán {Dalecký} and František {Zbořil}",
title="An Approach to ANFIS Performance",
booktitle="Advances in Intelligent Systems and Computing",
year="2015",
series="Mendel 2015 Recent Advances in Soft Computing",
pages="195--206",
address="Brno",
doi="10.1007/978-3-319-19824-8\{_}16",
isbn="978-3-319-19823-1",
url="https://www.fit.vut.cz/research/publication/10768/"
}
Files
Projects
Centrum excelence IT4Innovations, MŠMT, Operační program Výzkum a vývoj pro inovace, ED1.1.00/02.0070, start: 2011-01-01, end: 2015-12-31, completed
Spolehlivost a bezpečnost v IT, BUT, Vnitřní projekty VUT, FIT-S-14-2486, start: 2014-01-01, end: 2016-12-31, completed
Spolehlivost a bezpečnost v IT, BUT, Vnitřní projekty VUT, FIT-S-14-2486, start: 2014-01-01, end: 2016-12-31, completed
Research groups
Intelligent Systems Research Group (RG INTSYS)
Departments