Result Details

Height of hyperideals in Noetherian Krasner hyperrings

BORDBAR, H.; CRISTEA, I.; NOVÁK, M. Height of hyperideals in Noetherian Krasner hyperrings. University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, 2017, vol. 79, no. 2, p. 31-42. ISSN: 1223-7027.
Type
journal article
Language
English
Authors
Bordbar Hashem, PhD, UMAT (FEEC)
Cristea Irina, doc. dr., UMAT (FEEC)
Novák Michal, doc. RNDr., Ph.D., UMAT (FEEC)
Abstract

Inspired by the classical concept of height of a prime ideal in a ring, we proposed in a precedent paper the notion of height of a prime hyperideal in a Krasner hyperring. In this note we first generalize some results concerning the height of a prime hyperideal in a Noetherian Krasner hyperring, with the intent to extend this definition to the case of a general hyperideal in a such hyperring. The main results in this note show that, in a commutative Noetherian Krasner hyperring, the height of a minimal prime hyperideal over a proper hyperideal generated by $n$ elements is less than or equal to $n$, the converse of this claim being also true. Based on this result, it can be proved that the height of such a prime hyperideal is limited by the height of a corresponding quotient hyperideal.

Keywords

Krasner hyperring, prime/maximal hyperideal, Noetherian hyperring, height of a prime hyperideal

URL
Published
2017
Pages
31–42
Journal
University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics, vol. 79, no. 2, ISSN 1223-7027
UT WoS
000406126800004
EID Scopus
BibTeX
@article{BUT136500,
  author="Hashem {Bordbar} and Irina {Cristea} and Michal {Novák}",
  title="Height of hyperideals in Noetherian Krasner hyperrings",
  journal="University Politehnica of Bucharest Scientific Bulletin-Series A-Applied Mathematics and Physics",
  year="2017",
  volume="79",
  number="2",
  pages="31--42",
  issn="1223-7027",
  url="https://www.scientificbulletin.upb.ro/SeriaA_-_Matematica_si_fizica_aplicate.php#"
}
Departments
Back to top