Result Details

Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning

MOŠNER, L.; WU, M.; RAJU, A.; PARTHASARATHI, S.; KUMATANI, K.; SUNDARAM, S.; MAAS, R.; HOFFMEISTER, B. Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning. In Proceedings of ICASSP. Brighton: IEEE Signal Processing Society, 2019. p. 6475-6479. ISBN: 978-1-5386-4658-8.
Type
conference paper
Language
English
Authors
Mošner Ladislav, Ing., DCGM (FIT)
WU, M.
RAJU, A.
PARTHASARATHI, S.
KUMATANI, K.
SUNDARAM, S.
MAAS, R.
HOFFMEISTER, B.
Abstract

For real-world speech recognition applications, noise robustnessis still a challenge. In this work, we adopt the teacherstudent(T/S) learning technique using a parallel clean andnoisy corpus for improving automatic speech recognition(ASR) performance under multimedia noise. On top of that,we apply a logits selection method which only preserves the khighest values to prevent wrong emphasis of knowledge fromthe teacher and to reduce bandwidth needed for transferringdata. We incorporate up to 8000 hours of untranscribed datafor training and present our results on sequence trained modelsapart from cross entropy trained ones. The best sequencetrained student model yields relative word error rate (WER)reductions of approximately 10.1%, 28.7% and 19.6% on ourclean, simulated noisy and real test sets respectively comparingto a sequence trained teacher.

Keywords

automatic speech recognition, noise robustness,teacher-student training, domain adaptation

URL
Published
2019
Pages
6475–6479
Proceedings
Proceedings of ICASSP
Conference
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISBN
978-1-5386-4658-8
Publisher
IEEE Signal Processing Society
Place
Brighton
DOI
UT WoS
000482554006141
EID Scopus
BibTeX
@inproceedings{BUT160006,
  author="MOŠNER, L. and WU, M. and RAJU, A. and PARTHASARATHI, S. and KUMATANI, K. and SUNDARAM, S. and MAAS, R. and HOFFMEISTER, B.",
  title="Improving Noise Robustness of Automatic Speech Recognition via Parallel Data and Teacher-student Learning",
  booktitle="Proceedings of ICASSP",
  year="2019",
  pages="6475--6479",
  publisher="IEEE Signal Processing Society",
  address="Brighton",
  doi="10.1109/ICASSP.2019.8683422",
  isbn="978-1-5386-4658-8",
  url="https://ieeexplore.ieee.org/document/8683422"
}
Files
Projects
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, start: 2016-01-01, end: 2020-12-31, completed
Research groups
Departments
Back to top