Result Details

Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

BRAVENEC, T.; FRÝZA, T. Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge. In International Conference Radioelektronika 2021. Brno: Vysoké učení technické v Brně, 2021. p. 1-6. ISBN: 978-0-7381-4436-8.
Type
conference paper
Language
English
Authors
Bravenec Tomáš, Ing., Ph.D., UREL (FEEC)
Frýza Tomáš, doc. Ing., Ph.D., UREL (FEEC)
Abstract

The main focus of this paper is to use post training quantization to analyse the influence of using lower precision data types in neural networks, while avoiding the process of retraining the networks in question. The main idea is to enable usage of high accuracy neural networks in devices other than high performance servers or super computers and bring the neural network compute closer to the device collecting the data. There are two main issues with using neural networks on edge devices, the memory constraint and the computational performance. Both of these issues could be diminished if the usage of lower precision data types does not considerably reduce the accuracy of the networks in question.

Keywords

deep learning; neural networks; computer vision; machine learning; parallel computing; inference optimization; inference at the edge; reduced precision computing

URL
Published
2021
Pages
1–6
Proceedings
International Conference Radioelektronika 2021
Conference
31th International Conference Radioelektronika 2021
ISBN
978-0-7381-4436-8
Publisher
Vysoké učení technické v Brně
Place
Brno
DOI
UT WoS
000676146400023
EID Scopus
BibTeX
@inproceedings{BUT171248,
  author="Tomáš {Bravenec} and Tomáš {Frýza}",
  title="Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge",
  booktitle="International Conference Radioelektronika 2021",
  year="2021",
  pages="1--6",
  publisher="Vysoké učení technické v Brně",
  address="Brno",
  doi="10.1109/RADIOELEKTRONIKA52220.2021.9420214",
  isbn="978-0-7381-4436-8",
  url="https://ieeexplore.ieee.org/document/9420214"
}
Departments
Back to top