Result Details

Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation

ŽMOLÍKOVÁ, K.; DELCROIX, M.; BURGET, L.; NAKATANI, T.; ČERNOCKÝ, J. Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation. In 2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings. Shenzhen - virtual: IEEE Signal Processing Society, 2021. p. 889-896. ISBN: 978-1-7281-7066-4.
Type
conference paper
Language
English
Authors
Žmolíková Kateřina, Ing., Ph.D., DCGM (FIT)
Delcroix Marc, FIT (FIT)
Burget Lukáš, doc. Ing., Ph.D., DCGM (FIT)
Nakatani Tomohiro, FIT (FIT)
Černocký Jan, prof. Dr. Ing., DCGM (FIT)
Abstract

In this paper, we propose a method combining variational autoencodermodel of speech with a spatial clustering approach for multichannelspeech separation. The advantage of integrating spatial clusteringwith a spectral model was shown in several works. As thespectral model, previous works used either factorial generative modelsof the mixed speech or discriminative neural networks. In ourwork, we combine the strengths of both approaches, by building afactorial model based on a generative neural network, a variationalautoencoder. By doing so, we can exploit the modeling power ofneural networks, but at the same time, keep a structured model. Sucha model can be advantageous when adapting to new noise conditionsas only the noise part of the model needs to be modified. We showexperimentally, that our model significantly outperforms previousfactorial model based on Gaussian mixture model (DOLPHIN), performscomparably to integration of permutation invariant trainingwith spatial clustering, and enables us to easily adapt to new noiseconditions.

Keywords

Multi-channel speech separation, variational autoencoder,spatial clustering, DOLPHIN

URL
Published
2021
Pages
889–896
Proceedings
2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings
Conference
2021 IEEE Spoken Language Technology Workshop (SLT)
ISBN
978-1-7281-7066-4
Publisher
IEEE Signal Processing Society
Place
Shenzhen - virtual
DOI
UT WoS
000663633300121
EID Scopus
BibTeX
@inproceedings{BUT175809,
  author="Kateřina {Žmolíková} and Marc {Delcroix} and Lukáš {Burget} and Tomohiro {Nakatani} and Jan {Černocký}",
  title="Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation",
  booktitle="2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings",
  year="2021",
  pages="889--896",
  publisher="IEEE Signal Processing Society",
  address="Shenzhen - virtual",
  doi="10.1109/SLT48900.2021.9383612",
  isbn="978-1-7281-7066-4",
  url="https://ieeexplore.ieee.org/document/9383612"
}
Files
Projects
Multi-linguality in speech technologies, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIN19087, start: 2020-01-01, end: 2023-08-31, completed
Neural Representations in multi-modal and multi-lingual modeling, GACR, Grantové projekty exelence v základním výzkumu EXPRO - 2019, GX19-26934X, start: 2019-01-01, end: 2023-12-31, completed
Research groups
Departments
Back to top