Result Details
A digital 3D Jordan-Brouwer separation theorem
ŠLAPAL, J. A digital 3D Jordan-Brouwer separation theorem. Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 2024, vol. 32, no. 3, p. 161-172. ISSN: 1224-1784.
Type
journal article
Language
English
Authors
Šlapal Josef, prof. RNDr., CSc., IM DAAG (FME)
Abstract
We introduce a connectedness in the digital space Z^3 induced by a quaternary relation. Using this connectedness, we prove a digital 3D Jordan-Brouwer separation theorem for boundary surfaces of the digital
polyhedra that may be face-to-face tiled with certain digital tetrahedra in Z^3. An advantage of the digital Jordan surfaces obtained over those given by the Khalimsky
Keywords
Digital space, Digital Jordan surface, Connectedness, Quaternary relation, Digital 3D tiling.
URL
Published
2024
Pages
161–172
Journal
Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, vol. 32, no. 3, ISSN 1224-1784
Publisher
Ovidius University Constanta
Place
Constanta
DOI
UT WoS
001335906900006
BibTeX
@article{BUT190036,
author="Josef {Šlapal}",
title="A digital 3D Jordan-Brouwer separation theorem",
journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
year="2024",
volume="32",
number="3",
pages="161--172",
doi="10.2478/auom-2024-0034",
issn="1224-1784",
url="https://www.anstuocmath.ro/mathematics/anale2024v3/9_Slapal.pdf"
}
Files
Departments