Result Details

BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis

PEŠÁN, J.; JUŘÍK, V.; KARAFIÁT, M.; ČERNOCKÝ, J. BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis. In Proceedings of Interspeech 2024. Proceedings of Interspeech. Kos: International Speech Communication Association, 2024. no. 9, p. 1355-1359. ISSN: 1990-9772.
Type
conference paper
Language
English
Authors
Pešán Jan, Ing., DCGM (FIT)
JUŘÍK, V.
Karafiát Martin, Ing., Ph.D., DCGM (FIT)
Černocký Jan, prof. Dr. Ing., DCGM (FIT)
Abstract

The Brno Extended Stress and Speech Test (BESST) dataset
is a new resource for the speech research community, offering
multimodal audiovisual, physiological and psychological data
that enable investigations into the interplay between stress and
speech. In this paper, we introduce the BESST dataset and provide a details of its design, collection protocols, and technical
aspects. The dataset comprises speech samples, physiologi-
cal signals (including electrocardiogram, electrodermal activity,
skin temperature, and acceleration data), and video recordings
from 90 subjects performing stress-inducing tasks. It comprises
16.9 hours of clean Czech speech data, averaging 15 minutes of
clean speech per participant. The data collection procedure involves the induction of cognitive and physical stress induced by
Reading Span task (RSPAN) and Hand Immersion (HIT) task
respectively. The BESST dataset was collected under stringent
ethical standards and is accessible for research and development.

Keywords

BESST dataset, stress recognition, multimodal data, speech research, physiological signals, cognitive load, speech production

URL
Published
2024
Pages
1355–1359
Journal
Proceedings of Interspeech, vol. 2024, no. 9, ISSN 1990-9772
Proceedings
Proceedings of Interspeech 2024
Conference
Interspeech Conference
Publisher
International Speech Communication Association
Place
Kos
DOI
EID Scopus
BibTeX
@inproceedings{BUT193740,
  author="PEŠÁN, J. and JUŘÍK, V. and KARAFIÁT, M. and ČERNOCKÝ, J.",
  title="BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis",
  booktitle="Proceedings of Interspeech 2024",
  year="2024",
  journal="Proceedings of Interspeech",
  volume="2024",
  number="9",
  pages="1355--1359",
  publisher="International Speech Communication Association",
  address="Kos",
  doi="10.21437/Interspeech.2024-42",
  issn="1990-9772",
  url="https://www.isca-archive.org/interspeech_2024/pesan24_interspeech.pdf"
}
Files
Projects
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-23-8278, start: 2023-03-01, end: 2026-02-28, running
Research groups
Departments
Department of Computer Graphics and Multimedia (DCGM)
Institute of Computer Aided Engineering and Computer Science (AIU)
Back to top