Course details

Digital Systems Design

INC Acad. year 2012/2013 Summer semester 5 credits

Current academic year

Binary digit system: positional notation, conversion of base, binary codes, binary arithmetic. Boolean algebra, logic functions and their representations: logic expressions, reduction methods, design of combinational logic networks. Analysis of logic networks behaviour: signal races, hazards. Selected logic modules: adder, subtractor, multiplexer, demultiplexer, decoder, coder, comparator, arithmetic and logic unit. Sequential logic networks, latches and flip-flops. State machines and their representations. Design of synchronized sequential networks: state assigment, optimization and implementation. Register, counter, shift register, impulse divider. Design of simple digital equipment: design CAD tools, description tools, design strategy. Integrated circuits families. Programmable logic devices. Simple asynchronous networks: design, analysis of behaviour, hazards.

Guarantor

Language of instruction

Czech, English

Completion

Credit+Examination

Time span

  • 39 hrs lectures
  • 10 hrs exercises
  • 3 hrs projects

Department

Subject specific learning outcomes and competences

To obtain an overview and fundamental knowledge of a practical use of selected methods for description of combinational and sequential logic networks which are inside digital equipments. To learn how to analyze and design combinational logic devices. To learn how to analyze and design sequential logic devices. Mastering of design of digital circuits consisting of combinational and sequential logic devices.

Learning objectives

To obtain an overview and fundamental knowledge of a practical use of selected methods for description of combinational and sequential logic networks which are inside digital equipments. To learn how to analyze and design combinational logic devices. To learn how to analyze and design sequential logic devices. To learn about design of digital circuits consisting of combinational and sequential logic devices.

Prerequisite knowledge and skills

The sets, relations and mappings. Basic terms and axioms of Boolean algebra. The elementary notions of the graph theory. Rudiments of electrical engineering phenomena and basic active and passive electronic elements.

Study literature

Fundamental literature

  • Harris, D., Harris, S.: Digital Design and Computer Architecture 2nd Edition, Morgan Kaufmann, eBook ISBN: 9780123978165, paperback ISBN: 9780123944245, 2012.
  • Wakerly, J. F.: Digital Design: Principles and Practices (4th Edition, Book only) 4th Edition, PEARSON, ISBN: 9788131713662, 8131713660, Edition: 4th Edition, 2008.
  • Mano, M. M. R, Ciletti, D.: Digital Design (4th Edition), Prentice-Hall, ISBN:0131989243, 2006.

Syllabus of lectures

  • Binary digit system: positional notation, conversion of base, binary codes, binary arithmetic.
  • Boolean algebra, logic functions and their representations, logic expressions.
  • Reduction methods: Qiune-McCluskey tabular method, Petrick's cover function.
  • Reduction methods: Karnaugh maps, logic and functional diagrams.
  • Analysis of logic networks behaviour: signal races, hazards.
  • Selected logic modules: adder, subtractor, multiplexer, demultiplexer, decoder, coder, comparator, arithmetic and logic unit.
  • Sequential logic networks, latches and flip-flops.
  • State machines and their representations. Design of synchronized sequential networks: state assigment, optimization and implementation. Register, counter, shift register, impulse divider.
  • Design of simple digital equipment: CAD tools, description tools, design strategy.
  • Integrated circuits families. 
  • Programmable logic devices.
  • Simple asynchronous networks: design, analysis of behaviour, hazards.

Syllabus of numerical exercises

  • Binary digit system: positional notation, conversion of base, binary codes, binary arithmetic.
  • Boolean algebra, logic functions and their representations, a behaviour analysis of contact-switch networks.
  • Logic expressions. Qiune-McCluskey tabular reduction method, Petrick's cover function.
  • Reduction methods: Karnaugh maps, logic and functional diagrams.
  • Logic functions implementation using logic components.
  • Selected logic modules: multiplexer, demultiplexer, encoder, decoder, adder, ALU.
  • State machines and their representations. Design of synchronized sequential networks.
  • Design of logic networks using programmable logic devices.

Progress assessment

For receiving the credit and thus for entering the exam, students have to obtain at least five points from the project. Plagiarism and not allowed cooperation will cause that involved students are not classified and disciplinary action may be initiated.

Controlled instruction

The knowledge of students is examined by the mid-exam (20 points), the project (25 pints) and by the final exam. The minimal number of points, which can be obtained from the final exam, is 25 (of 55 points). Otherwise, no points will be assigned to a student. Plagiarism and not allowed cooperation will cause that involved students are not classified and disciplinary action can be initiated.

Course inclusion in study plans

  • Programme IT-BC-3, field BIT, 1st year of study, Compulsory
Back to top