Result Details
Method and an apparatus for fast convolution of signals with a one-sided exponential function
Registered: 12 December 2013
Approved: 15 March 2016
Expiration: 25 July 2034
Type
patent
Language
English
Authors
Seeman Michal, Ing., Ph.D.
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UAMT (FEEC), DCGM (FIT)
Bařina David, Ing., Ph.D., DCGM (FIT)
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UAMT (FEEC), DCGM (FIT)
Bařina David, Ing., Ph.D., DCGM (FIT)
Description
A method and an apparatus embodying the method for fast convolution of a signal with a one-sided exponential function is disclosed. Additionally, a method and a system embodying the method for fast convolution of a signal with complex exponential function localized around an origin by an exponential function envelope utilizing the method and a system embodying the method for fast convolution of a signal with a one-sided exponential function is disclosed.
Keywords
signal processing, convolution, Gaussian, Gabor
URL
Number
US 9286268
Issuer
United States Patent and Trademark Office (USPTO), Alexandria, US
License
Use of the result by another entity is possible without acquiring a license in some cases
License Fee
The licensor does not require a license fee for the result in some cases
Owner
Vysoké učení technické v Brně
Projects
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, start: 2016-01-01, end: 2020-12-31, completed
V3C - Visual Computing Competence Center, TAČR, Centra kompetence, TE01020415, start: 2012-05-01, end: 2019-12-31, completed
Zpracování, rozpoznávání a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-14-2506, start: 2014-01-01, end: 2016-12-31, completed
V3C - Visual Computing Competence Center, TAČR, Centra kompetence, TE01020415, start: 2012-05-01, end: 2019-12-31, completed
Zpracování, rozpoznávání a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-14-2506, start: 2014-01-01, end: 2016-12-31, completed
Research groups
Computer Graphics Research Group (RG GRAPH)
Departments