Result Details

AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions

KIŠŠ, M.; BENEŠ, K.; HRADIŠ, M. AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions. In Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021. Lecture Notes in Computer Science. Lausanne: Springer Nature Switzerland AG, 2021. p. 463-477. ISBN: 978-3-030-86336-4.
Type
conference paper
Language
English
Authors
Kišš Martin, Ing., DCGM (FIT)
Beneš Karel, Ing., Ph.D., DCGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEEC), DCGM (FIT)
Abstract

This paper addresses text recognition for domains with limited manual annotations by a simple self-training strategy. Our approach should reduce human annotation effort when target domain data is plentiful, such as when transcribing a collection of single person's correspondence or a large manuscript. We propose to train a seed system on large scale data from related domains mixed with available annotated data from the target domain. The seed system transcribes the unannotated data from the target domain which is then used to train a better system. We study several confidence measures and eventually decide to use the posterior probability of a transcription for data selection. Additionally, we propose to augment the data using an aggressive masking scheme. By self-training, we achieve up to 55 % reduction in character error rate for handwritten data and up to 38 % on printed data. The masking augmentation itself reduces the error rate by about 10 % and its effect is better pronounced in case of difficult handwritten data.

Keywords

self-training, text recognition, language model, unlabelled
data, confidence measures, data augmentation.

URL
Published
2021
Pages
463–477
Proceedings
Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021
Series
Lecture Notes in Computer Science
Volume
12824
Conference
International Conference on Document Analysis and Recognition
ISBN
978-3-030-86336-4
Publisher
Springer Nature Switzerland AG
Place
Lausanne
DOI
UT WoS
000711880100031
EID Scopus
BibTeX
@inproceedings{BUT175776,
  author="Martin {Kišš} and Karel {Beneš} and Michal {Hradiš}",
  title="AT-ST: Self-Training Adaptation Strategy for OCR in Domains with Limited Transcriptions",
  booktitle="Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition - ICDAR 2021",
  year="2021",
  series="Lecture Notes in Computer Science",
  volume="12824",
  pages="463--477",
  publisher="Springer Nature Switzerland AG",
  address="Lausanne",
  doi="10.1007/978-3-030-86337-1\{_}31",
  isbn="978-3-030-86336-4",
  url="https://pero.fit.vutbr.cz/publications"
}
Projects
Advanced content extraction and recognition for printed and handwritten documents for better accessibility and usability, MK, Program na podporu aplikovaného výzkumu a experimentálního vývoje národní a kulturní identity na léta 2016 až 2022 (NAKI II), DG18P02OVV055, start: 2018-03-01, end: 2022-12-31, completed
Neural Representations in multi-modal and multi-lingual modeling, GACR, Grantové projekty exelence v základním výzkumu EXPRO - 2019, GX19-26934X, start: 2019-01-01, end: 2023-12-31, completed
OCR, ClassificAtion & Machine Translation, EU, Connecting Europe Facility (CEF), start: 2019-10-01, end: 2021-09-30, completed
Research groups
Departments
Back to top