Course details

Advanced Operating Systems

POSe Acad. year 2009/2010 Summer semester 5 credits

Current academic year

Basic concepts, operating system kernel, kernel structure. Processes and threads. Parallel programming and synchronization with a view to kernel synchronization. Synchronization tools and their usage. Deadlock, deadlock detection and prevention. Scheduling algorithms for uniprocessor systems. Memory management, virtual memory, paging, virtual memory implementation. Input/Output, synchronous and asynchronous I/O, drivers, optimalization of disk operations. File systems, disk space allocation, metadata structures, failure recovery, file system examples. Kernel security and protection.

Guarantor

Language of instruction

English

Completion

Examination

Time span

  • 26 hrs lectures
  • 13 hrs pc labs
  • 13 hrs projects

Department

Subject specific learning outcomes and competences

Students are acquainted with the parallel programming using POSIX threads, usage of synchronization primitives, virtual memory and file system.

A deeper understanding of computer systems and system programming.

Learning objectives

The goal is to acquaint students with the principles and concepts that are used as a basis of modern operating system kernels.

Prerequisite knowledge and skills

Unix shell usage, C language programming in Unix environment, computer architecture, Intel x86 assembler, basic principles of operating systems.

Study literature

  • Bic, L., Shaw, A.C.: Operating Systems Principles, Prentice-Hall, 2003, ISBN 0-13-026611-6
  • Open Sources: Voices from the Open Source Revolution, O'Reilly, 1999, ISBN 1-56592-582-3
  • Love, R.: Linux Kernel Development, Second Edition, Pearson Education, 2005, ISBN 0-672-32720-1

Fundamental literature

  • Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming, Addison-Wesley, 2000, ISBN 0-201-35752-6
  • Bic, L., Shaw, A.C.: Operating Systems Principles, Prentice-Hall, 2003, ISBN 0-13-026611-6
  • Nutt, G.J.: Operating Systems: A Modern Perspective, Addison-Wesley, 2000, ISBN 0-201-61251-8
  • Vahalia, U.: Unix Internals: The New Frontiers, Prentice-Hall, 1996, ISBN 0-13-101908-2
  • Schimmel, K.: UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers, Addison-Wesley, 1994, ISBN 0-201-63338-8
  • McKusick, M.K., Neville-Neil, G.V.: The Design and Implementation of the FreeBSD Operating System, Addison-Wesley, 2004, ISBN 0-201-70245-2

Syllabus of lectures

  1. Kernel structure, interface, system calls, context switch, interrupts, system interface, Unix systems interface, standardization, SVID, XPG.
  2. Processes and POSIX threads, creating processes and threads, threads implementation.
  3. Parallel programming, synchronization, synchronization basics, mutual exclusion using memory read&write.
  4. Synchronization using special instructions on uniprocessor and multiprocessor systems with shared memory, priority inversion and solution.
  5. Synchronization tools and programming languages frameworks, classical synchronization tasks and their solutions.
  6. Processor scheduling, strategy, implementation, scheduling algorithms for uniprocessor systems.
  7. Resource allocation, deadlock, deadlock avoidance, solutions for CR and SR systems.
  8. Memory architecture, paging, page tables and TLB.
  9. Virtual memory, paging algorithm, page replacement algorithms.
  10. Practical aspects of virtual memory - code sharing, memory sharing, locking, dynamic libraries, file mapping, kernel memory.
  11. Input and output, drivers, synchronous and asynchronous operations, disk I/O optimization.
  12. Files systems, organization, space allocation, free space allocation, failure recovery, Unix file systems, BSD FFS and log based file systems.
  13. Security and protection, system access, data protection, security risks.

Progress assessment

Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.

Controlled instruction

Projects have to be submitted before the deadline, late project submission will be graded 0 points.

Back to top