Course details

Functional Verification of Digital Systems

FVS Acad. year 2017/2018 Summer semester 5 credits

Current academic year

Importance of functional verification. Requirements specification and verification plan. Simulation and creating testbenches. Functional verification and its methods (pseudo-random stimuli generation, coverage-driven verification, asserion-based verification, self-checking mechanisms). Verification methodologies and SystemVerilog language. Reporting and correction of errors. Emulation and FPGA prototyping.

Guarantor

Language of instruction

Czech

Completion

Examination (written+oral)

Time span

  • 26 hrs lectures
  • 8 hrs laboratories
  • 18 hrs projects

Assessment points

  • 60 pts final exam (written part)
  • 20 pts labs
  • 20 pts projects

Department

Subject specific learning outcomes and competences

A student will understand the main techniques of functional verification of digital systems: simulation, functional verification and its methods, emulation and prototyping. He/she will be able to analyze source codes and outputs of verification tools, to localize errors and to handle their correction. He/she will master creating basic verification environments in SystemVerilog language according to OVM/UVM verification methodology.

Learning objectives

Overview about functional verification of digital systems. The attention is paid to creating testbenches and functional verification environments according to widely used verification methodologies (OVM, UVM) and to emulation. The aim is to understand how to detect and localize errors in digital systems and how to handle them properly.

Prerequisite knowledge and skills

Digital system design, basic programming skills.

Study literature

  • Přednáškové materiály v elektronické formě.

Fundamental literature

  • * Myer, A.: Principles of Functional Verification, Newnes, USA, 2003. ISBN: 0750676175. * Bergeron, J.: Writing Testbenches using SystemVerilog, Springer, USA, 2006. ISBN: 0387292217 * Spear, Ch., Tumbush, G., SystemVerilog for Verification: A Guide to Learning the Testbench Language Features, Springer, USA, 2012. ISBN: 1461407141. * Haque, F., Michelson, J., Khan, K.: The Art of Verification with SystemVerilog Assertions, Verification Central, USA, 2006. ISBN: 0971199418. 

Syllabus of lectures

  1. History of functional verification, HDL and HVL languages. Requirements specification and the verification plan.
  2. Testing digital systems using simulation. VHDL language. Creating testbenches. HDL simulators.
  3. Introduction to functional verification. Functional verification techniques.
  4. Verification methodologies. HVL languages.
  5. Pseudo-random stimuli generation, direct tests, constraints.
  6. Coverage-driven verification. Coverage metrics. Coverage measurement and analysis.
  7. Self-checking mechanisms.
  8. Assertions. Assertion languages. Errors reporting.
  9. Assertion-based verification.
  10. Emulation and prototyping.
  11. Hardware debugging.
  12. Industry lecture.
  13. Special cases in verification of digital systems. Other verification approaches. Challenges and open problems in verification.

Syllabus of laboratory exercises

  1. Creating testbench for arithmetic-logic unit (ALU).
  2. Creating verification environment for ALU.
  3. Coverage-driven verification of ALU.
  4. Assertion-based verification of ALU.

Progress assessment

Study evaluation is based on marks obtained for specified items. Minimimum number of marks to pass is 50.

Requirements for class accreditation are not defined.

Controlled instruction

Labs and project in due dates.

Course inclusion in study plans

Back to top