Publication Details
Deep Auto-encoder Based Multi-task Learning Using Probabilistic Transcriptions
DAS Amit, HASEGAWA-JOHNSON Mark and VESELÝ Karel. Deep Auto-encoder Based Multi-task Learning Using Probabilistic Transcriptions. In: Proceedings of Interspeech 2017. Stockholm: International Speech Communication Association, 2017, pp. 2073-2077. ISSN 1990-9772. Available from: http://www.isca-speech.org/archive/Interspeech_2017/pdfs/0582.PDF
Czech title
Multi-task trénování s pravděpodobnostními přepisy založené na hlubokém autoenkodéru
Type
conference paper
Language
english
Authors
URL
Keywords
cross-lingual speech recognition, probabilistic transcription, deep neural networks, multi-task learning
Abstract
This article is about deep auto-encoder based Multi-task Learning using probabilistic transcriptions.
Published
2017
Pages
2073-2077
Journal
Proceedings of Interspeech - on-line, vol. 2017, no. 8, ISSN 1990-9772
Proceedings
Proceedings of Interspeech 2017
Conference
Interspeech Conference, Stockholm, SE
Publisher
International Speech Communication Association
Place
Stockholm, SE
DOI
UT WoS
000457505000434
EID Scopus
BibTeX
@INPROCEEDINGS{FITPUB11585, author = "Amit Das and Mark Hasegawa-Johnson and Karel Vesel\'{y}", title = "Deep Auto-encoder Based Multi-task Learning Using Probabilistic Transcriptions", pages = "2073--2077", booktitle = "Proceedings of Interspeech 2017", journal = "Proceedings of Interspeech - on-line", volume = 2017, number = 08, year = 2017, location = "Stockholm, SE", publisher = "International Speech Communication Association", ISSN = "1990-9772", doi = "10.21437/Interspeech.2017-582", language = "english", url = "https://www.fit.vut.cz/research/publication/11585" }