Result Details

From lattices to H_v -matrices

KŘEHLÍK, Š.; NOVÁK, M. From lattices to H_v -matrices. Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 2016, vol. XXIV, no. 3, p. 209-222. ISSN: 1224-1784.
Type
journal article
Language
English
Authors
Křehlík Štěpán, RNDr., Ph.D.
Novák Michal, doc. RNDr., Ph.D., UMAT (FEEC)
Abstract

In this paper we study the concept of sets of elements, related to results of an associative binary operation. We discuss this issue in the context of matrices and lattices. First of all, we define hyperoperations similar to those used when constructing hyperstructures from quasi-ordered semigroups. This then enables us to show that if entries of matrices are elements of lattices, these considerations provide a natural link between matrices, some basic concepts of the hyperstructure theory including $H_v$--rings and $H_v$--matrices and also one recent construction of hyperstructures.

Keywords

Distributive lattice, $H_v$--matrix, $H_v$--ring, Join space, Partially ordered semigroup

URL
Published
2016
Pages
209–222
Journal
Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, vol. XXIV, no. 3, ISSN 1224-1784
DOI
UT WoS
000392747700011
EID Scopus
BibTeX
@article{BUT116986,
  author="Štěpán {Křehlík} and Michal {Novák}",
  title="From lattices to H_v -matrices",
  journal="Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica",
  year="2016",
  volume="XXIV",
  number="3",
  pages="209--222",
  doi="10.1515/auom-2016-0055",
  issn="1224-1784",
  url="http://www.anstuocmath.ro/mathematics//Anale2016Vvol3/10_Krehlik_S.__Novak_M..pdf"
}
Departments
Back to top