Result Details

Analysis of BUT-PT Submission for NIST LRE 2017

PLCHOT, O.; MATĚJKA, P.; NOVOTNÝ, O.; CUMANI, S.; LOZANO DÍEZ, A.; SLAVÍČEK, J.; DIEZ SÁNCHEZ, M.; GRÉZL, F.; GLEMBEK, O.; KAMSALI VEERA, M.; SILNOVA, A.; BURGET, L.; ONDEL YANG, L.; KESIRAJU, S.; ROHDIN, J. Analysis of BUT-PT Submission for NIST LRE 2017. In Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop. Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland. Les Sables d'Olonne: International Speech Communication Association, 2018. no. 6, p. 47-53. ISSN: 2312-2846.
Type
conference paper
Language
English
Authors
Plchot Oldřich, Ing., Ph.D., DCGM (FIT)
Matějka Pavel, Ing., Ph.D., DCGM (FIT)
Novotný Ondřej, Ing., Ph.D., DCGM (FIT)
Cumani Sandro, Ph.D.
LOZANO DÍEZ, A.
SLAVÍČEK, J.
DIEZ SÁNCHEZ, M.
Grézl František, Ing., Ph.D., DCGM (FIT)
Glembek Ondřej, Ing., Ph.D., DCGM (FIT)
KAMSALI VEERA, M.
Silnova Anna, M.Sc., Ph.D., DCGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., DCGM (FIT)
ONDEL YANG, L.
Kesiraju Santosh, Ph.D., DCGM (FIT)
Rohdin Johan Andréas, M.Sc., Ph.D., FIT (FIT), DCGM (FIT)
Abstract

In this paper, we summarize our efforts in the NIST LanguageRecognition Evaluations (LRE) 2017 which resulted in systemsproviding very competitive and state-of-the-art performance. Weprovide both the descriptions and the analysis of the systemsthat we included in our submission. We explain our partitioningof the datasets that we were provided by NIST for training anddevelopment, and we follow by describing the features, DNNmodels and classifiers that were used to produce the final systems.After covering the architecture of our submission, weconcentrate on post-evaluation analysis. We compare differentDNN Bottle-Neck features, i-vector systems of different sizesand architectures, different classifiers and we present experimentalresults with data augmentation and with improved architectureof the system based on DNN embeddings. We presentthe performance of the systems in the Fixed condition (whereparticipants are required to use only predefined data sets) andin addition to official NIST LRE17 evaluation set, we also provideresults on our internal development set which can serve asa baseline for other researchers, since all training data are fixedand provided by NIST.

Keywords

language recognition

URL
Published
2018
Pages
47–53
Journal
Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland, vol. 2018, no. 6, ISSN 2312-2846
Proceedings
Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop
Conference
Odyssey 2018
Publisher
International Speech Communication Association
Place
Les Sables d'Olonne
DOI
EID Scopus
BibTeX
@inproceedings{BUT155068,
  author="PLCHOT, O. and MATĚJKA, P. and NOVOTNÝ, O. and CUMANI, S. and LOZANO DÍEZ, A. and SLAVÍČEK, J. and DIEZ SÁNCHEZ, M. and GRÉZL, F. and GLEMBEK, O. and KAMSALI VEERA, M. and SILNOVA, A. and BURGET, L. and ONDEL YANG, L. and KESIRAJU, S. and ROHDIN, J.",
  title="Analysis of BUT-PT Submission for NIST LRE 2017",
  booktitle="Proceedings of Odyssey 2018 The Speaker and Language Recognition Workshop",
  year="2018",
  journal="Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland",
  volume="2018",
  number="6",
  pages="47--53",
  publisher="International Speech Communication Association",
  address="Les Sables d'Olonne",
  doi="10.21437/Odyssey.2018-7",
  issn="2312-2846",
  url="http://www.fit.vutbr.cz/research/groups/speech/publi/2018/plchot_odyssey2018_69.pdf"
}
Files
Projects
Improving Robustnes in Automatic Speaker Recognition, GACR, Juniorské granty, GJ17-23870Y, start: 2017-01-01, end: 2019-12-31, completed
Information mining in speech acquired by distant microphones, MV, Bezpečnostní výzkum České republiky 2015-2020, VI20152020025, start: 2015-10-01, end: 2020-09-30, completed
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, start: 2016-01-01, end: 2020-12-31, completed
Robust SPEAKER DIariazation systems using Bayesian inferenCE and deep learning methods, EU, Horizon 2020, start: 2017-03-01, end: 2019-02-28, completed
Sequence summarizing neural networks for speaker recognition, EU, Horizon 2020, 5SA15094, start: 2016-07-01, end: 2019-06-30, completed
Research groups
Departments
Back to top