Result Details

Challenging margin-based speaker embedding extractors by using the variational information bottleneck

STAFYLAKIS, T.; SILNOVA, A.; ROHDIN, J.; PLCHOT, O.; BURGET, L. Challenging margin-based speaker embedding extractors by using the variational information bottleneck. In Proceedings of Interspeech 2024. Proceedings of Interspeech. Kos: International Speech Communication Association, 2024. no. 9, p. 3220-3224. ISSN: 1990-9772.
Type
conference paper
Language
English
Authors
Stafylakis Themos
Silnova Anna, M.Sc., Ph.D., DCGM (FIT)
Rohdin Johan Andréas, M.Sc., Ph.D., FIT (FIT), DCGM (FIT)
Plchot Oldřich, Ing., Ph.D., DCGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., DCGM (FIT)
Abstract

Speaker embedding extractors are typically trained using a
classification loss over the training speakers. During the last
few years, the standard softmax/cross-entropy loss has been
replaced by the margin-based losses, yielding significant im-
provements in speaker recognition accuracy. Motivated by
the fact that the margin merely reduces the logit of the target
speaker during training, we consider a probabilistic framework
that has a similar effect. The variational information bottle-
neck provides a principled mechanism for making deterministic
nodes stochastic, resulting in an implicit reduction of the pos-
terior of the target speaker. We experiment with a wide range
of speaker recognition benchmarks and scoring methods and re-
port competitive results to those obtained with the state-of-the-
art Additive Angular Margin loss.

Keywords

speaker recognition, variational information bottleneck

URL
Published
2024
Pages
3220–3224
Journal
Proceedings of Interspeech, vol. 2024, no. 9, ISSN 1990-9772
Proceedings
Proceedings of Interspeech 2024
Conference
Interspeech Conference
Publisher
International Speech Communication Association
Place
Kos
DOI
EID Scopus
BibTeX
@inproceedings{BUT193738,
  author="Themos {Stafylakis} and Anna {Silnova} and Johan Andréas {Rohdin} and Oldřich {Plchot} and Lukáš {Burget}",
  title="Challenging margin-based speaker embedding extractors by using the variational information bottleneck",
  booktitle="Proceedings of Interspeech 2024",
  year="2024",
  journal="Proceedings of Interspeech",
  volume="2024",
  number="9",
  pages="3220--3224",
  publisher="International Speech Communication Association",
  address="Kos",
  doi="10.21437/Interspeech.2024-2058",
  issn="1990-9772",
  url="https://www.isca-archive.org/interspeech_2024/stafylakis24_interspeech.pdf"
}
Files
Projects
Exchanges for SPEech ReseArch aNd TechnOlogies, EU, Horizon 2020, start: 2021-01-01, end: 2025-12-31, running
Tools To Combat Voice DeepFakes, MV, Programu bezpečnostního výzkumu ČR 2021-2026: vývoj, testování a evaluace nových bezpečnostních technologií (SECTECH) - II. veřejná soutěž, VB02000060, start: 2024-01-01, end: 2026-12-31, running
Research groups
Departments
Back to top