Result Details

BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction

DOČEKAL, M.; HRADIŠ, M.; KOHÚT, J.; VAŠKO, M. BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction. In Document Analysis and Recognition – ICDAR 2025. Cham: Springer Nature Switzerland, 2025. p. 287-304. ISBN: 978-3-032-04623-9.
Type
conference paper
Language
English
Authors
Kohút Jan, Ing., DCGM (FIT)
Dočekal Martin, Ing., DCGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEEC), DCGM (FIT)
Vaško Marek, Ing., DCGM (FIT)
Abstract

Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction.

Keywords

Bibliographic metadata extraction; Dataset; VLLM

URL
Published
2025
Pages
287–304
Proceedings
Document Analysis and Recognition – ICDAR 2025
Conference
International Conference on Document Analysis and Recognition
ISBN
978-3-032-04623-9
Publisher
Springer Nature Switzerland
Place
Cham
DOI
EID Scopus
BibTeX
@inproceedings{BUT197676,
  author="Jan {Kohút} and Martin {Dočekal} and Michal {Hradiš} and Marek {Vaško}",
  title="BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction",
  booktitle="Document Analysis and Recognition – ICDAR 2025",
  year="2025",
  pages="287--304",
  publisher="Springer Nature Switzerland",
  address="Cham",
  doi="10.1007/978-3-032-04624-6\{_}17",
  isbn="978-3-032-04623-9",
  url="https://link.springer.com/chapter/10.1007/978-3-032-04624-6_17"
}
Projects
Machine learning for printed heritage digitisation, MK, NAKI III – program na podporu aplikovaného výzkumu v oblasti národní a kulturní identity na léta 2023 až 2030, DH23P03OVV066, start: 2023-03-01, end: 2027-12-31, running
Departments
Back to top