Result Details

CNN for license plate motion deblurring

SVOBODA, P.; HRADIŠ, M.; MARŠÍK, L.; ZEMČÍK, P. CNN for license plate motion deblurring. In IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE Signal Processing Society, 2016. p. 3832-3836. ISBN: 978-1-4673-9961-6.
Type
conference paper
Language
English
Authors
Svoboda Pavel, Ing., Ph.D., DCGM (FIT)
Hradiš Michal, Ing., Ph.D., DCGM (FIT)
Maršík Lukáš, Ing., DCGM (FIT)
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UAMT (FEEC), DCGM (FIT)
Abstract

In this work we explore the previously proposed approach of direct blind deconvolution and denoising with convolutional neural networks (CNN) in a situation where the blur kernels are partially constrained. We focus on blurred images from a real-life traffic surveillance system, on which we, for the first time, demonstrate that neural networks trained on artificial data provide superior reconstruction quality on real images compared to traditional blind deconvolution methods. The training data is easy to obtain by blurring sharp photos from a target system with a very rough approximation of the expected blur kernels, thereby allowing custom CNNs to be trained for a specific application (image content and blur range). Additionally, we evaluate the behavior and limits of the CNNs with respect to blur direction range and length.

Keywords

Convolutional neural network, Motionblur, Image reconstruction, Blind deconvolution, Licenseplate

URL
Published
2016
Pages
3832–3836
Proceedings
IEEE International Conference on Image Processing (ICIP)
Conference
International Conference on Image Processing (ICIP) 2016
ISBN
978-1-4673-9961-6
Publisher
IEEE Signal Processing Society
Place
Phoenix
DOI
UT WoS
000390782003167
EID Scopus
BibTeX
@inproceedings{BUT133500,
  author="Pavel {Svoboda} and Michal {Hradiš} and Lukáš {Maršík} and Pavel {Zemčík}",
  title="CNN for license plate motion deblurring",
  booktitle="IEEE International Conference on Image Processing (ICIP)",
  year="2016",
  pages="3832--3836",
  publisher="IEEE Signal Processing Society",
  address="Phoenix",
  doi="10.1109/ICIP.2016.7533077",
  isbn="978-1-4673-9961-6",
  url="http://ieeexplore.ieee.org/document/7533077/"
}
Projects
Algorithms, Design Methods, and Many-Core Execution Platform for Low-Power Massive Data-Rate Video and Image Processing, MŠMT, Společné technologické iniciativy, 7H14002, start: 2014-04-01, end: 2017-06-30, completed
Zpracování, rozpoznávání a zobrazování multimediálních a 3D dat, BUT, Vnitřní projekty VUT, FIT-S-14-2506, start: 2014-01-01, end: 2016-12-31, completed
Research groups
Departments
Back to top