Detail výsledku

CNN for license plate motion deblurring

SVOBODA, P.; HRADIŠ, M.; MARŠÍK, L.; ZEMČÍK, P. CNN for license plate motion deblurring. In IEEE International Conference on Image Processing (ICIP). Phoenix: IEEE Signal Processing Society, 2016. p. 3832-3836. ISBN: 978-1-4673-9961-6.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Svoboda Pavel, Ing., Ph.D., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UPGM (FIT)
Maršík Lukáš, Ing., UPGM (FIT)
Zemčík Pavel, prof. Dr. Ing., dr. h. c., UAMT (FEKT), UPGM (FIT)
Abstrakt

In this work we explore the previously proposed approach of direct blind deconvolution and denoising with convolutional neural networks (CNN) in a situation where the blur kernels are partially constrained. We focus on blurred images from a real-life traffic surveillance system, on which we, for the first time, demonstrate that neural networks trained on artificial data provide superior reconstruction quality on real images compared to traditional blind deconvolution methods. The training data is easy to obtain by blurring sharp photos from a target system with a very rough approximation of the expected blur kernels, thereby allowing custom CNNs to be trained for a specific application (image content and blur range). Additionally, we evaluate the behavior and limits of the CNNs with respect to blur direction range and length.

Klíčová slova

Convolutional neural network, Motionblur, Image reconstruction, Blind deconvolution, Licenseplate

URL
Rok
2016
Strany
3832–3836
Sborník
IEEE International Conference on Image Processing (ICIP)
Konference
International Conference on Image Processing (ICIP) 2016
ISBN
978-1-4673-9961-6
Vydavatel
IEEE Signal Processing Society
Místo
Phoenix
DOI
UT WoS
000390782003167
EID Scopus
BibTeX
@inproceedings{BUT133500,
  author="Pavel {Svoboda} and Michal {Hradiš} and Lukáš {Maršík} and Pavel {Zemčík}",
  title="CNN for license plate motion deblurring",
  booktitle="IEEE International Conference on Image Processing (ICIP)",
  year="2016",
  pages="3832--3836",
  publisher="IEEE Signal Processing Society",
  address="Phoenix",
  doi="10.1109/ICIP.2016.7533077",
  isbn="978-1-4673-9961-6",
  url="http://ieeexplore.ieee.org/document/7533077/"
}
Projekty
Algoritmy, metody návrhu a platforma pro many-core zpracování obrazu a videa s velkou propustností a malou spotřebou energie, MŠMT, Společné technologické iniciativy, 7H14002, zahájení: 2014-04-01, ukončení: 2017-06-30, ukončen
Zpracování, rozpoznávání a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-14-2506, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru