Result Details

Recursive Variational Inference for Total Least-Squares

FRIML, D.; VÁCLAVEK, P. Recursive Variational Inference for Total Least-Squares. IEEE Control Systems Letters, 2023, vol. 7, no. 1, p. 2839-2844. ISSN: 2475-1456.
Type
journal article
Language
English
Authors
Friml Dominik, Ing., Ph.D., RG-3-02 (CEITEC), UAMT (FEEC)
Václavek Pavel, prof. Ing., Ph.D., RG-3-02 (CEITEC), UAMT (FEEC)
Abstract

This letter analyzes methods for deriving credible intervals to facilitate errors-in-variables identification by expanding on Bayesian total least squares. The credible intervals are approximated employing Laplace and variational approximations of the intractable posterior density function. Three recursive identification algorithms providing an approximation of the credible intervals for inference with the Bingham and the Gaussian priors are proposed. The introduced algorithms are evaluated on numerical experiments, and a practical example of application on battery cell total capacity estimation compared to the state-of-the-art algorithms is presented.

Keywords

Bayes methods; parameter estimation; identification; variational methods

URL
Published
2023
Pages
2839–2844
Journal
IEEE Control Systems Letters, vol. 7, no. 1, ISSN 2475-1456
Publisher
IEEE
Place
PISCATAWAY
DOI
UT WoS
001030633500020
EID Scopus
BibTeX
@article{BUT184309,
  author="Dominik {Friml} and Pavel {Václavek}",
  title="Recursive Variational Inference for Total Least-Squares",
  journal="IEEE Control Systems Letters",
  year="2023",
  volume="7",
  number="1",
  pages="2839--2844",
  doi="10.1109/LCSYS.2023.3289608",
  url="https://ieeexplore.ieee.org/document/10163935"
}
Files
Departments
Cybernetics and Robotics (RG-3-02)
Department of Control and Instrumentation (UAMT)
Back to top