Detail výsledku

Recursive Variational Inference for Total Least-Squares

FRIML, D.; VÁCLAVEK, P. Recursive Variational Inference for Total Least-Squares. IEEE Control Systems Letters, 2023, vol. 7, no. 1, p. 2839-2844. ISSN: 2475-1456.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Friml Dominik, Ing., Ph.D., RG-3-02 (CEITEC VUT), UAMT (FEKT)
Václavek Pavel, prof. Ing., Ph.D., RG-3-02 (CEITEC VUT), UAMT (FEKT)
Abstrakt

This letter analyzes methods for deriving credible intervals to facilitate errors-in-variables identification by expanding on Bayesian total least squares. The credible intervals are approximated employing Laplace and variational approximations of the intractable posterior density function. Three recursive identification algorithms providing an approximation of the credible intervals for inference with the Bingham and the Gaussian priors are proposed. The introduced algorithms are evaluated on numerical experiments, and a practical example of application on battery cell total capacity estimation compared to the state-of-the-art algorithms is presented.

Klíčová slova

Bayes methods; parameter estimation; identification; variational methods

URL
Rok
2023
Strany
2839–2844
Časopis
IEEE Control Systems Letters, roč. 7, č. 1, ISSN 2475-1456
Vydavatel
IEEE
Místo
PISCATAWAY
DOI
UT WoS
001030633500020
EID Scopus
BibTeX
@article{BUT184309,
  author="Dominik {Friml} and Pavel {Václavek}",
  title="Recursive Variational Inference for Total Least-Squares",
  journal="IEEE Control Systems Letters",
  year="2023",
  volume="7",
  number="1",
  pages="2839--2844",
  doi="10.1109/LCSYS.2023.3289608",
  url="https://ieeexplore.ieee.org/document/10163935"
}
Soubory
Pracoviště
Kybernetika a robotika (RG-3-02)
Ústav automatizace a měřicí techniky (UAMT)
Nahoru