Detail publikace
Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques
Úvod: Prezentace vizuálních podnětů může vyvolat změny v EEG signálech které jsou obvykle zjistitelné zprůměrováním dat z více pokusů pro analýza jednotlivých účastníků i analýza skupin nebo podmínek
více účastníků. Tato studie navrhuje novou metodu založenou na diskrétnosti waveletová transformace s Huffmanovým kódováním a strojovým učením pro jeden pokus analýza potenciálu souvisejícího s událostmi (ERP) a klasifikace různých vizuálních události v úloze detekce vizuálních objektů.
Metoda: Jednotlivé pokusy EEG jsou dekomponovány pomocí diskrétní vlnkové transformace (DWT) do 4 úroveň rozkladu pomocí biortogonálního B-spline vlnka. Koeficienty DWT v každém pokusu jsou limitovány tak, aby byly řídké vlnkové koeficienty, přičemž kvalita signálu je dobře zachována. The zbývající optimální koeficienty v každém pokusu jsou zakódovány do bitových toků pomocí Huffmanovo kódování a kódová slova jsou reprezentovány jako rys ERP signál. Výkon této metody je testován s reálnými vizuálními ERP šedesát osm předmětů.
Výsledky: Navržená metoda významně eliminuje spontánní EEG aktivita, extrahuje vizuální ERP na jeden pokus, představuje křivku ERP do a kompaktní bitový tok jako funkce a dosahuje slibných výsledků při klasifikaci vizuální objekty s klasifikační výkonnostní metrikou: přesnost 93,606,5, citlivosti 93,554,5, specificity 94,854,2, přesnosti 92,505,5 a plocha pod křivkou (AUC) 0,930,3 pomocí SVM a k-NN strojového učení klasifikátory.
Závěr: Navrhovaná metoda naznačuje společné použití diskrétní vlnky
transformace (DWT) s Huffmanovým kódováním má potenciál efektivně extrahovat ERP z EEG na pozadí pro studium evokovaných reakcí v ERP na jeden pokus a klasifikace vizuálních podnětů. Navrhovaný přístup má časovou složitost O(N). a mohly by být implementovány v systémech v reálném čase, jako je mozek-počítač rozhraní (BCI), kde je žádoucí hladká rychlá detekce mentálních událostí ovládat stroj s myslí.
@ARTICLE{FITPUB12746, author = "Hafeez Ullah Amin and Rafi Ullah and Mohammed Faruque Reza and Saeed Aamir Malik", title = "Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques", pages = "1--17", journal = "Journal of NeuroEngineering and Rehabilitation", volume = 20, number = 70, year = 2023, ISSN = "1743-0003", doi = "10.1186/s12984-023-01179-8", language = "english", url = "https://www.fit.vut.cz/research/publication/12746" }