Detail výsledku

Inductive Synthesis of Finite-State Controllers for POMDPs

ANDRIUSHCHENKO, R.; ČEŠKA, M.; JUNGES, S.; KATOEN, J. Inductive Synthesis of Finite-State Controllers for POMDPs. In Conference on Uncertainty in Artificial Intelligence. Proceedings of Machine Learning Research. Proceedings of Machine Learning Research. Eindhoven: Proceedings of Machine Learning Research, 2022. no. 180, p. 85-95. ISSN: 2640-3498.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Andriushchenko Roman, Ing., UITS (FIT)
Češka Milan, doc. RNDr., Ph.D., UITS (FIT)
JUNGES, S.
KATOEN, J.
Abstrakt

We present a novel learning framework to obtain finite-state controllers (FSCs) for partially observable Markov decision processes and illustrate its applicability for indefinite-horizon specifications. Our framework builds on oracle-guided inductive synthesis to explore a design space compactly representing available FSCs. The inductive synthesis approach consists of two stages: The outer stage determines the design space, i.e., the set of FSC candidates, while the inner stage efficiently explores the design space. This framework is easily generalisable and shows promising results when compared to existing approaches. Experiments indicate that our technique is (i) competitive to state-of-the-art belief-based approaches for indefinite-horizon properties, (ii) yields smaller FSCs than existing methods for several POMDP models, and (iii) naturally treats multi-objective specifications.

Klíčová slova

partially observable Markov decision processes, finite-state controllers, inductive synthesis, counter-examples, abstraction 

Rok
2022
Strany
85–95
Časopis
Proceedings of Machine Learning Research, roč. 180, č. 180, ISSN 2640-3498
Sborník
Conference on Uncertainty in Artificial Intelligence
Řada
Proceedings of Machine Learning Research
Konference
Uncertainty in Artificial Intelligence
Vydavatel
Proceedings of Machine Learning Research
Místo
Eindhoven
UT WoS
001228408900009
EID Scopus
BibTeX
@inproceedings{BUT178215,
  author="ANDRIUSHCHENKO, R. and ČEŠKA, M. and JUNGES, S. and KATOEN, J.",
  title="Inductive Synthesis of Finite-State Controllers for POMDPs",
  booktitle="Conference on Uncertainty in Artificial Intelligence",
  year="2022",
  series="Proceedings of Machine Learning Research",
  journal="Proceedings of Machine Learning Research",
  volume="180",
  number="180",
  pages="85--95",
  publisher="Proceedings of Machine Learning Research",
  address="Eindhoven"
}
Projekty
Computer-Aided Quantitative Synthesis, GAČR, Juniorské granty, GJ20-02328Y, zahájení: 2020-01-01, ukončení: 2022-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru