Detail výsledku
Towards Writing Style Adaptation in Handwriting Recognition
KOHÚT, J.; HRADIŠ, M.; KIŠŠ, M. Towards Writing Style Adaptation in Handwriting Recognition. In Document Analysis and Recognition - ICDAR 2023. Lecture Notes in Computer Science. Lecture Notes in Computer Science. San José: Springer Nature Switzerland AG, 2023. no. 1, p. 377-394. ISBN: 978-3-031-41684-2. ISSN: 0302-9743.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Kohút Jan, Ing., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEKT), UPGM (FIT)
Kišš Martin, Ing., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEKT), UPGM (FIT)
Kišš Martin, Ing., UPGM (FIT)
Abstrakt
One of the challenges of handwriting recognition is to transcribe a large number of vastly different writing styles. State-of-the-art approaches do not explicitly use information about the writer's style, which may be limiting overall accuracy due to various ambiguities. We explore models with writer-dependent parameters which take the writer's identity as an additional input. The proposed models can be trained on datasets with partitions likely written by a single author (e.g. single letter, diary, or chronicle). We propose a Writer Style Block (WSB), an adaptive instance normalization layer conditioned on learned embeddings of the partitions. We experimented with various placements and settings of WSB and contrastively pre-trained embeddings. We show that our approach outperforms a baseline with no WSB in a writer-dependent scenario and that it is possible to estimate embeddings for new writers. However, domain adaptation using simple finetuning in a writer-independent setting provides superior accuracy at a similar computational cost. The proposed approach should be further investigated in terms of training stability and embedding regularization to overcome such a baseline.
Klíčová slova
Handwritten text recognition, OCR, Domain adaptation, Domain dependent parameters, Finetuning, CTC.
URL
Rok
2023
Strany
377–394
Časopis
Lecture Notes in Computer Science, roč. 14190, č. 1, ISSN 0302-9743
Sborník
Document Analysis and Recognition - ICDAR 2023
Řada
Lecture Notes in Computer Science
Konference
International Conference on Document Analysis and Recognition
ISBN
978-3-031-41684-2
Vydavatel
Springer Nature Switzerland AG
Místo
San José
DOI
EID Scopus
BibTeX
@inproceedings{BUT185150,
author="Jan {Kohút} and Michal {Hradiš} and Martin {Kišš}",
title="Towards Writing Style Adaptation in Handwriting Recognition",
booktitle="Document Analysis and Recognition - ICDAR 2023",
year="2023",
series="Lecture Notes in Computer Science",
journal="Lecture Notes in Computer Science",
volume="14190",
number="1",
pages="377--394",
publisher="Springer Nature Switzerland AG",
address="San José",
doi="10.1007/978-3-031-41685-9\{_}24",
isbn="978-3-031-41684-2",
issn="0302-9743",
url="https://pero.fit.vutbr.cz/publications"
}
Projekty
Smart digilinka - Strojové učení pro digitalizaci tištěného dědictví, MK, NAKI III – program na podporu aplikovaného výzkumu v oblasti národní a kulturní identity na léta 2023 až 2030, DH23P03OVV066, zahájení: 2023-03-01, ukončení: 2027-12-31, řešení
Pracoviště