Detail výsledku

Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition

KOHÚT, J.; HRADIŠ, M. Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition. In Document Analysis and Recognition - ICDAR 2023. Lecture Notes in Computer Science. Lecture Notes in Computer Science. San José: Springer Nature Switzerland AG, 2023. no. 1, p. 269-286. ISBN: 978-3-031-41684-2. ISSN: 0302-9743.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Kohút Jan, Ing., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEKT), UPGM (FIT)
Abstrakt

In many machine learning tasks, a large general dataset and a small specialized dataset are available. In such situations, various domain adaptation methods can be used to adapt a general model to the target dataset. We show that in the case of neural networks trained for handwriting recognition using CTC, simple finetuning with data augmentation works surprisingly well in such scenarios and that it is resistant to overfitting even for very small target domain datasets. We evaluated the behavior of finetuning with respect to augmentation, training data size, and quality of the pre-trained network, both in writer-dependent and writer-independent settings. On a large real-world dataset, finetuning provided an average relative CER improvement of 25 % with 16 text lines for new writers and 50 % for 256 text lines.

Klíčová slova

Handwritten text recognition, OCR, Data augmentation, Finetuning.

URL
Rok
2023
Strany
269–286
Časopis
Lecture Notes in Computer Science, roč. 14190, č. 1, ISSN 0302-9743
Sborník
Document Analysis and Recognition - ICDAR 2023
Řada
Lecture Notes in Computer Science
Konference
International Conference on Document Analysis and Recognition
ISBN
978-3-031-41684-2
Vydavatel
Springer Nature Switzerland AG
Místo
San José
DOI
EID Scopus
BibTeX
@inproceedings{BUT185151,
  author="Jan {Kohút} and Michal {Hradiš}",
  title="Finetuning Is a Surprisingly Effective Domain Adaptation Baseline in Handwriting Recognition",
  booktitle="Document Analysis and Recognition - ICDAR 2023",
  year="2023",
  series="Lecture Notes in Computer Science",
  journal="Lecture Notes in Computer Science",
  volume="14190",
  number="1",
  pages="269--286",
  publisher="Springer Nature Switzerland AG",
  address="San José",
  doi="10.1007/978-3-031-41685-9\{_}17",
  isbn="978-3-031-41684-2",
  issn="0302-9743",
  url="https://pero.fit.vutbr.cz/publications"
}
Projekty
semANT - Sémantický průzkumník textového kulturního dědictví, MK, NAKI III – program na podporu aplikovaného výzkumu v oblasti národní a kulturní identity na léta 2023 až 2030, DH23P03OVV060, zahájení: 2023-03-01, ukončení: 2027-12-31, řešení
Pracoviště
Nahoru