Detail výsledku

Hardware-Aware Evolutionary Approaches to Deep Neural Networks

SEKANINA, L.; MRÁZEK, V.; PIŇOS, M. Hardware-Aware Evolutionary Approaches to Deep Neural Networks. In Handbook of Evolutionary Machine Learning. Genetic and Evolutionary Computation. Singapore: Springer Nature Singapore, 2023. p. 367-396. ISBN: 978-981-9938-13-1.
Typ
kapitola, resp. kapitoly v odborné knize
Jazyk
anglicky
Autoři
Abstrakt

This chapter gives an overview of evolutionary algorithm (EA) based methods applied to the design of efficient implementations of deep neural networks (DNN). We introduce various acceleration hardware platforms for DNNs developed especially for energy-efficient computing in edge devices. In addition to evolutionary optimization of their particular components or settings, we will describe neural architecture search (NAS) methods adopted to directly design highly optimized DNN architectures for a given hardware platform. Techniques that co-optimize hardware platforms and neural network architecture to maximize the accuracy-energy trade-offs will be emphasized. Case studies will primarily be devoted to NAS for image classification. Finally, the open challenges of this popular research area will be discussed.

Klíčová slova

deep neural network, evolutionary algorithm, hardware accelerator, inference, image classification

URL
Rok
2023
Strany
367–396
Kniha
Handbook of Evolutionary Machine Learning
Řada
Genetic and Evolutionary Computation
ISBN
978-981-9938-13-1
Vydavatel
Springer Nature Singapore
Místo
Singapore
DOI
BibTeX
@inbook{BUT185298,
  author="Lukáš {Sekanina} and Vojtěch {Mrázek} and Michal {Piňos}",
  title="Hardware-Aware Evolutionary Approaches to Deep Neural Networks",
  booktitle="Handbook of Evolutionary Machine Learning",
  year="2023",
  publisher="Springer Nature Singapore",
  address="Singapore",
  series="Genetic and Evolutionary Computation",
  pages="367--396",
  doi="10.1007/978-981-99-3814-8\{_}12",
  isbn="978-981-9938-13-1",
  url="https://link.springer.com/chapter/10.1007/978-981-99-3814-8_12"
}
Soubory
Projekty
Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje, GAČR, Standardní projekty, GA21-13001S, zahájení: 2021-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru