Detail výsledku

Bayesian joint-sequence models for grapheme-to-phoneme conversion

HANNEMANN, M.; TRMAL, J.; ONDEL YANG, L.; KESIRAJU, S.; BURGET, L. Bayesian joint-sequence models for grapheme-to-phoneme conversion. In Proceedings of ICASSP 2017. New Orleans: IEEE Signal Processing Society, 2017. p. 2836-2840. ISBN: 978-1-5090-4117-6.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Hannemann Mirko, Ph.D.
Trmal Jan, Ing., Ph.D.
Ondel Lucas Antoine Francois, Mgr., Ph.D., UPGM (FIT)
Kesiraju Santosh, Ph.D., UPGM (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Abstrakt

We describe a fully Bayesian approach to grapheme-to-phonemeconversion based on the joint-sequence model (JSM). Usually, standardsmoothed n-gram language models (LM, e.g. Kneser-Ney)are used with JSMs to model graphone sequences (joint graphemephonemepairs). However, we take a Bayesian approach using ahierarchical Pitman-Yor-Process LM. This provides an elegant alternativeto using smoothing techniques to avoid over-training. Noheld-out sets and complex parameter tuning is necessary, and severalconvergence problems encountered in the discounted Expectation-Maximization (as used in the smoothed JSMs) are avoided. Everystep is modeled by weighted finite state transducers and implementedwith standard operations from the OpenFST toolkit. Weevaluate our model on a standard data set (CMUdict), where it givescomparable results to the previously reported smoothed JSMs interms of phoneme-error rate while requiring a much smaller training/testing time. Most importantly, our model can be used in aBayesian framework and for (partly) un-supervised training.

Klíčová slova

Bayesian approach, joint-sequence models,weighted finite state transducers, letter-to-sound, grapheme-tophoneme conversion, hierarchical Pitman-Yor-Process

URL
Rok
2017
Strany
2836–2840
Sborník
Proceedings of ICASSP 2017
Konference
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP)
ISBN
978-1-5090-4117-6
Vydavatel
IEEE Signal Processing Society
Místo
New Orleans
DOI
UT WoS
000414286203002
EID Scopus
BibTeX
@inproceedings{BUT144449,
  author="Mirko {Hannemann} and Jan {Trmal} and Lucas Antoine Francois {Ondel} and Santosh {Kesiraju} and Lukáš {Burget}",
  title="Bayesian joint-sequence models for grapheme-to-phoneme conversion",
  booktitle="Proceedings of ICASSP 2017",
  year="2017",
  pages="2836--2840",
  publisher="IEEE Signal Processing Society",
  address="New Orleans",
  doi="10.1109/ICASSP.2017.7952674",
  isbn="978-1-5090-4117-6",
  url="https://www.fit.vut.cz/research/publication/11469/"
}
Soubory
Projekty
DARPA Jazyky s omezenými zdroji pro potenciální krizové situace (LORELEI) - Využití jazykové informace pro situační povědomí (ELISA, University of Southern California, zahájení: 2015-09-01, ukončení: 2020-03-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru