Detail výsledku

Ask2Mask: Guided Data Selection for Masked Speech Modeling

BASKAR, M.; ROSENBERG, A.; RAMABHADRAN, B.; ZHANG, Y.; MORENO, P. Ask2Mask: Guided Data Selection for Masked Speech Modeling. IEEE Journal of Selected Topics in Signal Processing, 2022, vol. 16, no. 6, p. 1357-1366. ISSN: 1932-4553.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Baskar Murali Karthick, Ing., Ph.D., UPGM (FIT)
Rosenberg Andrew
Ramabhadran Bhuvana
Zhang Yu
Moreno Pedro, FIT (FIT)
Abstrakt

Masked speech modeling (MSM) methods such as wav2vec2 or w2v-BERT learn representations over speech frames which are randomlymaskedwithin an utterance. While thesemethods improve performance of Automatic Speech Recognition (ASR)systems, they have one major limitation. They treat all unsupervised speech samples with equal weight, which hinders learning as not all samples have relevant information to learn meaningful representations. In this work, we address this limitation. We propose ask2mask (ATM), a novel approach to focus on specific samples during MSM pre-training. ATM employs an external ASR model or scorer to weight unsupervised input samples in two different ways: 1) A fine-grained data selection is performed by masking over the highly confident input frames as chosen by the scorer. This allows themodel to learnmeaningful representations. 2) ATM is further extended to focus at utterance-level by weighting the final MSM loss with the utterance-level confidence score. We conduct fine-tuning experiments on two well-benchmarked corpora:LibriSpeech (matching the pre-training data) and Commonvoice, TED-LIUM, AMI and CHiME-6 (not matching the pre-training data). The results substantiate the efficacy of ATM on significantly improving the recognition performance under mismatchedconditions (up to 11.6% relative over published results and upto 4.46% relative over our internal baseline) while still yielding modestimprovements under matched conditions.

Klíčová slova

Guided Data Selection, Masked Speech Modeling

URL
Rok
2022
Strany
1357–1366
Časopis
IEEE Journal of Selected Topics in Signal Processing, roč. 16, č. 6, ISSN 1932-4553
DOI
UT WoS
000870301500019
EID Scopus
BibTeX
@article{BUT182529,
  author="Murali Karthick {Baskar} and Andrew {Rosenberg} and Bhuvana {Ramabhadran} and Yu {Zhang} and Pedro {Moreno}",
  title="Ask2Mask: Guided Data Selection for Masked Speech Modeling",
  journal="IEEE Journal of Selected Topics in Signal Processing",
  year="2022",
  volume="16",
  number="6",
  pages="1357--1366",
  doi="10.1109/JSTSP.2022.3186162",
  issn="1932-4553",
  url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9806175"
}
Soubory
Projekty
HumanE AI Síť, EU, Horizon 2020, zahájení: 2020-09-01, ukončení: 2024-08-31, ukončen
Moderní metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-20-6460, zahájení: 2020-03-01, ukončení: 2023-02-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru