Detail předmětu
Stochastické procesy
SSP FSI SSP Ak. rok 2019/2020 letní semestr 4 kredity
Předmět obsahuje úvod do teorie náhodných procesů: typy a základní vlastnosti, kovarianční funkce, spektrální hustota, stacionarita, příklady typických procesù, časové řady a jejich vyhodnocení, parametrické a neparametrické metody, identifikace period, ARMA procesy. Aplikace metod pro vypracování projektu vyhodnocení a predikci časových řad s podporou výpočetního prostředí MATLAB.
Garant předmětu
Jazyk výuky
Zakončení
Rozsah
- 26 hod. přednášky
- 13 hod. cvičení
Zajišťuje ústav
Přednášející
Cvičící
Získané dovednosti, znalosti a kompetence z předmětu
Předmět umožňuje studentům získat základní znalosti o modelovani stochastických procesů (dekompoziční model, ARMA) a způsobech výpočtu odhadu jejich nejrůznějších charakteristik s cílem popsat mechanismus chování procesu na základě pozorování jeho časové řady. Student tak zvládne základní metody pro vyhodnocování reálných dat.
Cíle předmětu
Cílem předmětu je seznámit studenty se základy teorie stochastických procesů a s používanými modely pro analýzu časových řad i algoritmy odhadu jejich parametrů. Ve cvičení se studenti učí na simulovaných nebo reálných datech prakticky aplikovat teoretické postupy formou projektu pomocí software MATLAB. Výsledkem je projekt vyhodnocení a predikce reálných časových řad.
Požadované prerekvizitní znalosti a dovednosti
Základy diferenciálního a integrálního počtu, teorie pravděpodobnosti a matematické statistiky.
Osnova přednášek
1. Stochastický proces, typy, trajektorie, příklady.
2. Konzistentní systém distribučních funkcí, striktní a slabá stacionarita.
3. Momentové charakteristiky: střední hodnota a autokorelačni funkce.
4. Spektrální hustota (vlastosti).
5. Dekompoziční model (aditivní, multiplikativní), stabilizace rozptylu.
6. Identifikace periodických komponent: periodogram, testy periodicity.
7. Metody separace periodických komponent.
8. Metody odhadu trendu: polynomiální regrese, linearní filtry, splajny.
9. Testy náhodnosti.
10.Nejlepší lineární predikce, Yuleův-Walkerův systém rovnic, chyba predikce.
11.Parciální autokorelační funkce, Durbinův-Levinsonův a inovanční algoritmus.
12.Linearní systémy a konvoluce, kauzalita, stabilita, odezva.
13.ARMA procesy a jejich speciální případy (AR a MA proces).
Osnova numerických cvičení
1. Načítání, ukládání a vizualizace dat, momentové charakteristiky stochastického procesu.
2. Simulace řad s charekteristickými průběhy autokorelační funkce: bílý šum, barevný šum s korelacemi jen na vzdálenost 1, s lineárním trendem a peridickou komponentou.
3. Detekce heteroskedasticity. Transformace stabilizující rozptyl (mocninná, Box-Coxova).
4. Identifikace periodických komponent časové řady, periodogram, testy.
5. Užití lineárního regresního modelu při dekompozici časové řady.
6. Odhad stupně polynomu pro trend a separace periodické složky.
7. Odstranění šumu pomocí lineární filtrace (metoda klouzavých vážených průměrů): návrh optimálních filtrů zachovávajících polynomy do zadaného stupně, Spencerovy 15-ti bodové váhy.
8. Filtrace metodou postupné polynomiální regrese.
9. Filtrace pomocí metody exponenciálního vyrovnávání.
10.Testy náhodnosti.
11.Simulace, identifikace a odhad parametrů modelu ARMA.
12.Testování významnosti (parciálních) korelací.
13.Konzultace k projektům studentů.
Průběžná kontrola studia
Podmínky udělení zkoušky: aktivní účast ve cvičení, prokázání základních dovedností pro praktickou analýzu dat na PC, klasifikace je výsledkem hodnocení průběžných písemných testů, resp. ústní zkoušky, a samostatného projektu analýzy dat.
Metody vyučování
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Kontrolovaná výuka
Účast na cvičení je povinná a o náhradě zameškané výuky rozhoduje učitel cvičení.
Zařazení předmětu ve studijních plánech