Detail předmětu

Brain Computer Interface

BRIa Ak. rok 2023/2024 zimní semestr 5 kreditů

Aktuální akademický rok

Garant předmětu

Koordinátor předmětu

Jazyk výuky

anglicky

Zakončení

zkouška (písemná)

Rozsah

  • 26 hod. přednášky
  • 8 hod. laboratoře
  • 18 hod. projekty

Bodové hodnocení

  • 52 bodů závěrečná zkouška (písemná část)
  • 48 bodů projekty

Zajišťuje ústav

Přednášející

Cvičící

Literatura studijní

  • Jonathan Wolpaw, Elizabeth Winter Wolpaw, Brain Computer Interfaces: Principles and practice, Oxford University Press, First Edition, 2012, ISBN: 978-0195388855.
  • Rajesh P. N. Rao, Brain-Computer Interfacing: An Introduction, Cambridge University Press, First edition, 2013, ISBN: 978-0521769419.
  • M. Bear, B. Connors, and M. Paradiso, Neuroscience: Exploring the Brain, Jones & Bartlett Learning, Fourth Edition, 2020, ISBN: 978-1284211283.
  • Nidal Kamel, Aamir S. Malik, EEG/ERP Analysis: Methods and Applications, CRC Press, First Edition, 2017, ISBN: 978-1138077089.
  • Mike X. Cohen, Matlab for brain and cognitive scientists, MIT Press, First Edition, 2017, ISBN: 978-0262035828.
  • Christoph Guger, Brendan Z. Allison, Michael Tangermann (eds.), Brain-Computer Interface Research: A State-of-the-Art Summary 9, Springer, First Edition, 2021, ISBN: 978-3030604592.
  • Ramsey N.F. and Millán J.d.R. (eds.), Brain-Computer Interfaces (Handbook of Clinical Neurology Series), Elsevier, First Edition, 2020, ISBN: 978-0444639349.

Literatura referenční

  • Guido Dornhege, Toward brain-computer interfacing, MIT Press, First Edition, 2008, ISBN: 978-0262042444.
  • F. Rieke, D. Warland, R. de Ruyter van Steveninck, and W. Bialek, Spikes: Exploring the Neural Code, MIT Press / Bradford Books, 1999, ISBN: 978-0262681087.
  • Jonathan Wolpaw, Elizabeth Winter Wolpaw, Brain Computer Interfaces: Principles and practice, Oxford University Press, First Edition, 2012, ISBN: 978-0195388855.
  • M. Bear, B. Connors, and M. Paradiso, Neuroscience: Exploring the Brain, Jones & Bartlett Learning, Fourth Edition, 2020, ISBN: 978-1284211283.
  • Aamir S. Malik, Hafeezullah Amin, Designing EEG Experiments for Studying the Brain: Design Code and Example Datasets, Academic Press, First edition, 2017, ISBN: 978-0128111406.
  • Donald L. Schomer, Fernando Lopes da Silva (Eds.), Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, LWW, Sixth Edition, 2010, ISBN: 978-0781789424.
  • Mike X. Cohen, Analyzing neural time series data: Theory and practice, MIT Press, First Edition, 2014, 978-0262019873.

Osnova přednášek

  1. Introduction to working of brain: This topic will introduce the various brain (anatomical) structures (like frontal, temporal lobes etc) and the functioning of the brain in terms of communication through neurons.
  2. Brain neural activity (EEG, ERP): The concepts of Electroencephalogram (EEG) and Event Related Potential (ERP) will be discussed in details as they are the foundation for brain computer interfaces (BCI).
  3. Introduction to BCI - technologies, components and types: Various BCI technologies will be discussed including FNIR, TDCS and various stimuli. Further, the components (amplifier, sensor etc) of BCI technologies will be introduced.
  4. Recording of brain neural activity: This is the most critical step in BCI as any BCI activity depends on the quality of the data captured from the scalp. Various montages like 10-20 system, references (like ear lobe) and other data capturing steps (like ensuring good contact etc) will be elaborated.
  5. Identifying & rectifying artefacts: The data captured from the scalp includes various physiological artefacts (like eye movements etc) as well as non-physiological artefacts (like line noise etc). It will be taught on how to identify and rectify these artefacts.
  6. Source localization techniques: It is important to know the origin of source in the brain - where the signal is being produced. Various inverse methods (like LORETA etc) will be introduced to teach the source localization from EEG signals.
  7. Feature Extraction for BCI: This topic will introduce EEG data analysis for feature extraction in time domain (like entropy etc), frequency domain (like spectral analysis etc) and time-frequency analysis using wavelet transform.
  8. Connectivity for BCI: The concept of brain networks (like resting state network etc) will be introduced and corresponding connectivity measures will be discussed. Both the functional as well as effective connectivity will be taught.
  9. Microstates for BCI: The advantage of EEG is its temporal resolution. The method of microstates will be taught that exploits the temporal resolution by finding stable brain states between 30 to 100ms.
  10. Using machine learning for BCI: The application of machine learning in BCI will be taught with respect to the various features extracted (like microstates, connectivity etc). In addition, the potential as well as the limitations of deep learning in BCI will be discussed.
  11. Clinical (medical) applications of BCI: Various clinical applications (like controlling a wheel chair, moving a prosthetic limb etc) will be introduced during this lecture.
  12. Non-Clinical (non-medical) applications of BCI: Various non-clinical applications (like controlling characters in a video game, flying a quadcopter etc) will be introduced.
  13. Future of BCI: The final lecture of the course will discuss the latest trends in BCI as well as the future applications of BCI in various fields (like rescue services, aviation, freight etc).

 

Osnova laboratorních cvičení

  1. Record EEG signals
  2. EEGLab Demonstration
  3. ERP experiment (AEP, VEP, MMN)
  4. Controlling an object

 

Osnova ostatní - projekty, práce

Every student will choose one project from a list of approved projects that are relevant for this course. The implementation, presentation and documentation of the project will be evaluated.  

 

Zařazení předmětu ve studijních plánech

Nahoru