Detail výsledku

Cartesian Genetic Programming as Local Optimizer of Logic Networks

SEKANINA, L.; PTÁK, O.; VAŠÍČEK, Z. Cartesian Genetic Programming as Local Optimizer of Logic Networks. In 2014 IEEE Congress on Evolutionary Computation. Beijing: IEEE Computational Intelligence Society, 2014. p. 2901-2908. ISBN: 978-1-4799-1488-3.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt


Logic synthesis and optimization methods work either globally on the whole logic network or locally on preselected subnetworks. Evolutionary design methods have already been applied to evolve and optimize logic circuits at the global level. In this paper, we propose a new method based on Cartesian genetic programming (CGP) as a local area optimizer in combinational logic networks. First, a subcircuit is extracted from a complex circuit, then the subcircuit is optimized by CGP and finally the optimized subcircuit replaces the original one. The procedure is repeated until a termination criterion is satisfied. We present a performance comparison of local and global evolutionary optimization methods with a conventional approach based on ABC and analyze these methods using differently pre-optimized benchmark circuits. If a sufficient time is available, the proposed locally optimizing CGP gives better results than other locally operating methods reported in the literature; however, its performance is significantly worse than the evolutionary global optimization.

Klíčová slova

logic network, cartesian genetic programming, optimization, digital circuit

Rok
2014
Strany
2901–2908
Sborník
2014 IEEE Congress on Evolutionary Computation
Konference
IEEE Congress on Evolutionary Computation 2014
ISBN
978-1-4799-1488-3
Vydavatel
IEEE Computational Intelligence Society
Místo
Beijing
DOI
UT WoS
000356684604023
EID Scopus
BibTeX
@inproceedings{BUT111519,
  author="Lukáš {Sekanina} and Ondřej {Pták} and Zdeněk {Vašíček}",
  title="Cartesian Genetic Programming as Local Optimizer of Logic Networks",
  booktitle="2014 IEEE Congress on Evolutionary Computation",
  year="2014",
  pages="2901--2908",
  publisher="IEEE Computational Intelligence Society",
  address="Beijing",
  doi="10.1109/CEC.2014.6900326",
  isbn="978-1-4799-1488-3",
  url="https://www.fit.vut.cz/research/publication/10504/"
}
Soubory
Projekty
Pokročilé metody evolučního návrhu složitých číslicových obvodů, GAČR, Standardní projekty, GA14-04197S, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru