Detail výsledku

BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition

SOCHOR, J.; HEROUT, A.; HAVEL, J. BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society, 2016. no. 6, p. 3006-3015. ISBN: 978-1-4673-8851-1. ISSN: 1063-6919.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Sochor Jakub, Ing., Ph.D., UPGM (FIT)
Herout Adam, prof. Ing., Ph.D., UPGM (FIT)
Havel Jiří, Ing., Ph.D., UPGM (FIT)
Abstrakt

We are dealing with the problem of fine-grained vehicle make&model recognition and verification. Our contribution is showing that extracting additional data from the video stream - besides the vehicle image itself - and feeding it into the deep convolutional neural network boosts the recognition performance considerably. This additional information includes: 3D vehicle bounding box used for "unpacking" the vehicle image, its rasterized low-resolution shape, and information about the 3D vehicle orientation. Experiments show that adding such information decreases classification error by 26% (the accuracy is improved from 0.772 to 0.832) and boosts verification average precision by 208% (0.378 to 0.785) compared to baseline pure CNN without any input modifications. Also, the pure baseline CNN outperforms the recent state of the art solution by 0.081. We provide an annotated set "BoxCars" of surveillance vehicle images augmented by various automatically extracted auxiliary information. Our approach and the dataset can considerably improve the performance of traffic surveillance systems.

Klíčová slova

Fine-grained recognition, vehicles, CNN, input modification

URL
Rok
2016
Strany
3006–3015
Časopis
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, č. 6, ISSN 1063-6919
Sborník
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Konference
Computer Vision and Pattern Recognition 2016
ISBN
978-1-4673-8851-1
Vydavatel
IEEE Computer Society
Místo
Las Vegas
DOI
UT WoS
000400012303008
EID Scopus
BibTeX
@inproceedings{BUT130949,
  author="Jakub {Sochor} and Adam {Herout} and Jiří {Havel}",
  title="BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition",
  booktitle="The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
  year="2016",
  journal="Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
  number="6",
  pages="3006--3015",
  publisher="IEEE Computer Society",
  address="Las Vegas",
  doi="10.1109/CVPR.2016.328",
  isbn="978-1-4673-8851-1",
  issn="1063-6919",
  url="http://ieeexplore.ieee.org/document/7780697/"
}
Projekty
RODOS - Centrum pro rozvoj dopravních systémů, TAČR, Centra kompetence, TE01020155, zahájení: 2012-04-01, ukončení: 2018-03-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru