Detail výsledku

Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks

MRÁZEK, V.; SARWAR, S.; SEKANINA, L.; VAŠÍČEK, Z.; ROY, K. Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. Austin, TX: Association for Computing Machinery, 2016. p. 811-817. ISBN: 978-1-4503-4466-1.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Mrázek Vojtěch, Ing., Ph.D., FIT (FIT), UPSY (FIT)
Sarwar Syed Shakib
Sekanina Lukáš, prof. Ing., Ph.D., UPSY (FIT)
Vašíček Zdeněk, doc. Ing., Ph.D., UPSY (FIT)
Roy Kaushik
Abstrakt


Artificial neural networks (NN) have shown a significant promise in difficult tasks like image classification or speech recognition. Even well-optimized hardware implementations of digital NNs show significant power consumption. It is mainly due to non-uniform pipeline structures and inherent redundancy of numerous arithmetic operations that have to be performed to produce each single output vector.  This paper provides a methodology for the design of well-optimized power-efficient NNs with a uniform structure suitable for hardware implementation. An error resilience analysis was performed in order to determine key constraints for the design of approximate multipliers that are employed in the resulting structure of NN. By means of a search based approximation method, approximate multipliers showing desired tradeoffs between the accuracy and implementation cost were created. Resulting approximate NNs, containing the approximate multipliers, were evaluated using standard benchmarks (MNIST dataset) and a real-world classification problem of Street-View House Numbers. Significant improvement in power efficiency was obtained in both cases with respect to regular NNs. In some cases, 91% power reduction of multiplication led to classification accuracy degradation of less than 2.80%. Moreover, the paper showed the capability of the back propagation learning algorithm to adapt with NNs containing the approximate multipliers. 

Klíčová slova

Approximate computing, Neural networks, Logic synthesis, Low power, Genetic programming

Rok
2016
Strany
811–817
Sborník
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
Konference
2016 IEEE / ACM International Conference On Computer Aided Design
ISBN
978-1-4503-4466-1
Vydavatel
Association for Computing Machinery
Místo
Austin, TX
DOI
UT WoS
000390297800081
EID Scopus
BibTeX
@inproceedings{BUT133493,
  author="Vojtěch {Mrázek} and Syed Shakib {Sarwar} and Lukáš {Sekanina} and Zdeněk {Vašíček} and Kaushik {Roy}",
  title="Design of Power-Efficient Approximate Multipliers for Approximate Artificial Neural Networks",
  booktitle="Proceedings of the IEEE/ACM International Conference on Computer-Aided Design",
  year="2016",
  pages="811--817",
  publisher="Association for Computing Machinery",
  address="Austin, TX",
  doi="10.1145/2966986.2967021",
  isbn="978-1-4503-4466-1",
  url="https://www.fit.vut.cz/research/publication/11142/"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Pokročilé metody evolučního návrhu složitých číslicových obvodů, GAČR, Standardní projekty, GA14-04197S, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru