Detail výsledku

Learning Speaker Representation for Neural Network Based Multichannel Speaker Extraction

ŽMOLÍKOVÁ, K.; DELCROIX, M.; KINOSHITA, K.; HIGUCHI, T.; OGAWA, A.; NAKATANI, T. Learning Speaker Representation for Neural Network Based Multichannel Speaker Extraction. In Proceedings of ASRU 2017. Okinawa: IEEE Signal Processing Society, 2017. p. 8-15. ISBN: 978-1-5090-4788-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Žmolíková Kateřina, Ing., Ph.D., UPGM (FIT)
Delcroix Marc, FIT (FIT)
Kinoshita Keisuke
Higuchi Takuya
Ogawa Atsunori
Nakatani Tomohiro
Abstrakt

Recently, schemes employing deep neural networks (DNNs) forextracting speech from noisy observation have demonstratedgreat potential for noise robust automatic speech recognition.However, these schemes are not well suited when the interferingnoise is another speaker. To enable extracting a target speakerfrom a mixture of speakers, we have recently proposed to informthe neural network using speaker information extracted froman adaptation utterance from the same speaker. In our previouswork, we explored ways how to inform the network about thespeaker and found a speaker adaptive layer approach to be suitablefor this task. In our experiments, we used speaker featuresdesigned for speaker recognition tasks as the additional speakerinformation, which may not be optimal for the speaker extractiontask. In this paper, we propose a usage of a sequence summarizingscheme enabling to learn the speaker representation jointlywith the network. Furthermore, we extend the previous experimentsto demonstrate the potential of our proposed methodas a front-end for speech recognition and explore the effect ofadditional noise on the performance of the method.

Klíčová slova

speaker extraction, speaker adaptive neural network, multi-speaker speech recognition, speaker representation learning, beamforming

URL
Rok
2017
Strany
8–15
Sborník
Proceedings of ASRU 2017
Konference
2017 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU)
ISBN
978-1-5090-4788-8
Vydavatel
IEEE Signal Processing Society
Místo
Okinawa
DOI
UT WoS
000426066100002
EID Scopus
BibTeX
@inproceedings{BUT144503,
  author="Kateřina {Žmolíková} and Marc {Delcroix} and Keisuke {Kinoshita} and Takuya {Higuchi} and Atsunori {Ogawa} and Tomohiro {Nakatani}",
  title="Learning Speaker Representation for Neural Network Based Multichannel Speaker Extraction",
  booktitle="Proceedings of ASRU 2017",
  year="2017",
  pages="8--15",
  publisher="IEEE Signal Processing Society",
  address="Okinawa",
  doi="10.1109/ASRU.2017.8268910",
  isbn="978-1-5090-4788-8",
  url="http://www.fit.vutbr.cz/research/groups/speech/publi/2017/zmolikova_asru2017.pdf"
}
Projekty
NTT - Parametrizace s obohacováním řeči pro robustní automatické rozpoznávání řeči s velkým objemem trénovacích dat, NTT, zahájení: 2017-10-01, ukončení: 2018-09-30, ukončen
Zpracování, zobrazování a analýza multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-17-3984, zahájení: 2017-03-01, ukončení: 2020-02-29, ukončen
Výzkumné skupiny
Pracoviště
Nahoru