Detail výsledku

GPAM: Genetic Programming with Associative Memory

JŮZA, T.; SEKANINA, L. GPAM: Genetic Programming with Associative Memory. In 26th European Conference on Genetic Programming (EuroGP) Held as Part of EvoStar. Lecture Notes in Computer Science. LNCS. Cham: Springer Nature Switzerland AG, 2023. no. 3, p. 68-83. ISBN: 978-3-031-29572-0. ISSN: 0302-9743.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Jůza Tadeáš, Ing., FIT (FIT)
Sekanina Lukáš, prof. Ing., Ph.D., UPSY (FIT)
Abstrakt

We focus on the evolutionary design of programs capable of capturing more randomness and outliers in the input data set than the standard genetic programming (GP)-based methods typically allow. We propose Genetic Programming with Associative Memory (GPAM) -- a GP-based system for symbolic regression which can utilize a small associative memory to store various data points to better approximate the original data set. The method is evaluated on five standard benchmarks in which a certain number of data points is replaced by randomly generated values. In another case study, GPAM is used as an on-chip generator capable of approximating the weights for a convolutional neural network (CNN) to reduce the access to an external weight memory. Using Cartesian genetic programming (CGP), we evolved expression-memory pairs that can generate weights of a single CNN layer.  If the associative memory contains 10% of the original weights, the weight generator evolved for a convolutional layer can approximate the original weights such that the CNN utilizing the generated weights shows less than a 1% drop in the classification accuracy on the MNIST data set. 

Klíčová slova

Genetic programming, Associative memory, Neural network, Weight compression, Symbolic regression

Rok
2023
Strany
68–83
Časopis
Lecture Notes in Computer Science, roč. 13986, č. 3, ISSN 0302-9743
Sborník
26th European Conference on Genetic Programming (EuroGP) Held as Part of EvoStar
Řada
LNCS
Konference
26th European Conference on Genetic Programming
ISBN
978-3-031-29572-0
Vydavatel
Springer Nature Switzerland AG
Místo
Cham
DOI
UT WoS
000999086900005
EID Scopus
BibTeX
@inproceedings{BUT185128,
  author="Tadeáš {Jůza} and Lukáš {Sekanina}",
  title="GPAM: Genetic Programming with Associative Memory",
  booktitle="26th European Conference on Genetic Programming (EuroGP) Held as Part of EvoStar",
  year="2023",
  series="LNCS",
  journal="Lecture Notes in Computer Science",
  volume="13986",
  number="3",
  pages="68--83",
  publisher="Springer Nature Switzerland AG",
  address="Cham",
  doi="10.1007/978-3-031-29573-7\{_}5",
  isbn="978-3-031-29572-0",
  issn="0302-9743"
}
Projekty
Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje, GAČR, Standardní projekty, GA21-13001S, zahájení: 2021-01-01, ukončení: 2023-12-31, ukončen
Biologií inspirované metody pro návrh výpočetních systémů zohledňující dostupné zdroje, EU, European Cooperation in Science and Technology (COST), zahájení: 2020-09-29, ukončení: 2024-09-28, ukončen
Výzkumné skupiny
Pracoviště
Nahoru