Detail výsledku
Approximation of Hardware Accelerators driven by Machine-Learning Models
MRÁZEK, V. Approximation of Hardware Accelerators driven by Machine-Learning Models. In Proceedings of International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS '23). Tallinn: Institute of Electrical and Electronics Engineers, 2023. p. 91-92. ISBN: 979-8-3503-3277-3.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Mrázek Vojtěch, Ing., Ph.D., UPSY (FIT)
Abstrakt
The goal of this tutorial is to introduce functional hardware approximation techniques employing machine learning methods. Functional approximation changes the function of a circuit slightly in order to reduce its power consumption. Machine learning models can help to estimate the error and the resulting circuit power consumption. The use of these techniques will be presented at multiple levels - at the individual component level and the higher level of HW accelerator synthesis.
Klíčová slova
approximate computing, machine learning, hardware accelerators
Rok
2023
Strany
91–92
Sborník
Proceedings of International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS '23)
Konference
International Symposium on Design and Diagnostics of Electronic Circuits and Systems
ISBN
979-8-3503-3277-3
Vydavatel
Institute of Electrical and Electronics Engineers
Místo
Tallinn
DOI
UT WoS
001012062000018
EID Scopus
BibTeX
@inproceedings{BUT183763,
author="Vojtěch {Mrázek}",
title="Approximation of Hardware Accelerators driven by Machine-Learning Models",
booktitle="Proceedings of International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS '23)",
year="2023",
pages="91--92",
publisher="Institute of Electrical and Electronics Engineers",
address="Tallinn",
doi="10.1109/DDECS57882.2023.10139484",
isbn="979-8-3503-3277-3"
}
Projekty
Automatizovaný návrh hardwarových akcelerátorů pro strojového učení zohledňující výpočetní zdroje, GAČR, Standardní projekty, GA21-13001S, zahájení: 2021-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
Výzkumná skupina Evolvable Hardware (VZ EHW)
Pracoviště
Ústav počítačových systémů
(UPSY)