Detail výsledku

Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation

ŽMOLÍKOVÁ, K.; DELCROIX, M.; BURGET, L.; NAKATANI, T.; ČERNOCKÝ, J. Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation. In 2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings. Shenzhen - virtual: IEEE Signal Processing Society, 2021. p. 889-896. ISBN: 978-1-7281-7066-4.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Žmolíková Kateřina, Ing., Ph.D., UPGM (FIT)
Delcroix Marc, FIT (FIT)
Burget Lukáš, doc. Ing., Ph.D., UPGM (FIT)
Nakatani Tomohiro, FIT (FIT)
Černocký Jan, prof. Dr. Ing., UPGM (FIT)
Abstrakt

In this paper, we propose a method combining variational autoencodermodel of speech with a spatial clustering approach for multichannelspeech separation. The advantage of integrating spatial clusteringwith a spectral model was shown in several works. As thespectral model, previous works used either factorial generative modelsof the mixed speech or discriminative neural networks. In ourwork, we combine the strengths of both approaches, by building afactorial model based on a generative neural network, a variationalautoencoder. By doing so, we can exploit the modeling power ofneural networks, but at the same time, keep a structured model. Sucha model can be advantageous when adapting to new noise conditionsas only the noise part of the model needs to be modified. We showexperimentally, that our model significantly outperforms previousfactorial model based on Gaussian mixture model (DOLPHIN), performscomparably to integration of permutation invariant trainingwith spatial clustering, and enables us to easily adapt to new noiseconditions.

Klíčová slova

Multi-channel speech separation, variational autoencoder,spatial clustering, DOLPHIN

URL
Rok
2021
Strany
889–896
Sborník
2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings
Konference
2021 IEEE Spoken Language Technology Workshop (SLT)
ISBN
978-1-7281-7066-4
Vydavatel
IEEE Signal Processing Society
Místo
Shenzhen - virtual
DOI
UT WoS
000663633300121
EID Scopus
BibTeX
@inproceedings{BUT175809,
  author="Kateřina {Žmolíková} and Marc {Delcroix} and Lukáš {Burget} and Tomohiro {Nakatani} and Jan {Černocký}",
  title="Integration of Variational Autoencoder and Spatial Clustering for Adaptive Multi-Channel Neural Speech Separation",
  booktitle="2021 IEEE Spoken Language Technology Workshop, SLT 2021 - Proceedings",
  year="2021",
  pages="889--896",
  publisher="IEEE Signal Processing Society",
  address="Shenzhen - virtual",
  doi="10.1109/SLT48900.2021.9383612",
  isbn="978-1-7281-7066-4",
  url="https://ieeexplore.ieee.org/document/9383612"
}
Soubory
Projekty
Multi-lingualita v řečových technologiích, MŠMT, INTER-EXCELLENCE - Podprogram INTER-ACTION, LTAIN19087, zahájení: 2020-01-01, ukončení: 2023-08-31, ukončen
Neuronové reprezentace v multimodálním a mnohojazyčném modelování, GAČR, Grantové projekty exelence v základním výzkumu EXPRO - 2019, GX19-26934X, zahájení: 2019-01-01, ukončení: 2023-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru