Detail výsledku

Self-supervised Pre-training of Text Recognizers

KIŠŠ, M.; HRADIŠ, M. Self-supervised Pre-training of Text Recognizers. In Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024. Lecture Notes in Computer Science. Atény: Springer Nature Switzerland AG, 2024. p. 218-235. ISBN: 978-3-031-70545-8.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Kišš Martin, Ing., UPGM (FIT)
Hradiš Michal, Ing., Ph.D., UAMT (FEKT), UPGM (FIT)
Abstrakt

In this paper, we investigate self-supervised pre-training methods for document text recognition. Nowadays, large unlabeled datasets can be collected for many research tasks, including text recognition, but it is costly to annotate them. Therefore, methods utilizing unlabeled data are researched. We study self-supervised pre-training methods based on masked label prediction using three different approaches - Feature Quantization, VQ-VAE, and Post-Quantized AE. We also investigate joint-embedding approaches with VICReg and NT-Xent objectives, for which we propose an image shifting technique to prevent model collapse where it relies solely on positional encoding while completely ignoring the input image. We perform our experiments on historical handwritten (Bentham) and historical printed datasets mainly to investigate the benefits of the self-supervised pre-training techniques with different amounts of annotated target domain data. We use transfer learning as strong baselines. The evaluation shows that the self-supervised pretraining on data from the target domain is very effective, but it struggles to outperform transfer learning from closely related domains. This paper is one of the first researches exploring self-supervised pre-training in document text recognition, and we believe that it will become a cornerstone for future research in this area. We made our implementation of the investigated methods publicly available at https://github.com/DCGM/pero-pretraining.

Klíčová slova

Self-supervised learning, Text Recognition, Pre-training, OCR, HTR

URL
Rok
2024
Strany
218–235
Sborník
Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024
Řada
Lecture Notes in Computer Science
Svazek
14807
Konference
International Conference on Document Analysis and Recognition
ISBN
978-3-031-70545-8
Vydavatel
Springer Nature Switzerland AG
Místo
Atény
DOI
UT WoS
001336396200013
EID Scopus
BibTeX
@inproceedings{BUT193312,
  author="Martin {Kišš} and Michal {Hradiš}",
  title="Self-supervised Pre-training of Text Recognizers",
  booktitle="Barney Smith, E.H., Liwicki, M., Peng, L. (eds) Document Analysis and Recognition - ICDAR 2024",
  year="2024",
  series="Lecture Notes in Computer Science",
  volume="14807",
  pages="218--235",
  publisher="Springer Nature Switzerland AG",
  address="Atény",
  doi="10.1007/978-3-031-70546-5\{_}13",
  isbn="978-3-031-70545-8",
  url="https://link.springer.com/chapter/10.1007/978-3-031-70546-5_13"
}
Projekty
semANT - Sémantický průzkumník textového kulturního dědictví, MK, NAKI III – program na podporu aplikovaného výzkumu v oblasti národní a kulturní identity na léta 2023 až 2030, DH23P03OVV060, zahájení: 2023-03-01, ukončení: 2027-12-31, řešení
Soudobé metody zpracování, analýzy a zobrazování multimediálních a 3D dat, VUT, Vnitřní projekty VUT, FIT-S-23-8278, zahájení: 2023-03-01, ukončení: 2026-02-28, řešení
Výzkumné skupiny
Pracoviště
Nahoru