Detail výsledku
Semi-Supervised Bootstrapping Approach For Neural Network Feature Extractor Training
This paper presents bootstrapping approach for training the Bottle-Neck neural networkfeature extractor which provides features for subsequent GMM-HMM recognizer. One can use this recognizer to automatically transcribe the unsupervised data and assign the confidence of the transcription. Based on the confidence, segmentsare selected and mixed with supervised data and newNNs are trained. The automatic transcription can recover 40-55% in comparison to manually transcribed data. This is 3 to 5% absolute improvement over NN trainedon supervised data only. Using 70-85% of automaticallytranscribed segments with the highest confidence was foundoptimal to achieve this result. Dropping the rest of the data prevents training on low quality transcripts.
Semi-supervised training, bootstrapping,bottle-neck features
@inproceedings{BUT105972,
author="František {Grézl} and Martin {Karafiát}",
title="Semi-Supervised Bootstrapping Approach For Neural Network Feature Extractor Training",
booktitle="Proceedings of ASRU 2013",
year="2013",
pages="470--475",
publisher="IEEE Signal Processing Society",
address="Olomouc",
isbn="978-1-4799-2755-5",
url="http://www.fit.vutbr.cz/research/groups/speech/publi/2013/grezl_asru2013_0000470.pdf"
}
IARPA Tvorba rozpoznávačů řeči pro vyhledávání klíčových slov v novém jazyce s omezenými trénovacími daty za týden (BABEL) - Babelon, BBN, zahájení: 2012-03-05, ukončení: 2016-11-04, ukončen
Rozpoznávání řeči pro jazyky s omezeným množstvím trénovacích zdrojů, GAČR, Postdoktorandské granty, GPP202/12/P604, zahájení: 2012-01-01, ukončení: 2014-12-31, ukončen