Detail výsledku

Combining Heterogeneous Models for Measuring Relational Similarity

ZHILA, A.; YIH, W.; MEEK, C.; MIKOLOV, T.; ZWEIG, G. Combining Heterogeneous Models for Measuring Relational Similarity. Proceedings of NAACL-HLT 2013. Atlanata, Georgia: Association for Computational Linguistics, 2013. p. 1000-1009. ISBN: 978-1-937284-47-3.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Zhila Alisa
Yih Wen-tau
Meek Christopher
Mikolov Tomáš, Ing., Ph.D.
Zweig Geoffrey
Abstrakt

In this paper, we presented a system that combinesheterogeneous models based on different informationsources for measuring relational similarity.

Klíčová slova

language modeling, heterogeneous models, recurrent neural networks

URL
Rok
2013
Strany
1000–1009
Sborník
Proceedings of NAACL-HLT 2013
Konference
The 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
ISBN
978-1-937284-47-3
Vydavatel
Association for Computational Linguistics
Místo
Atlanata, Georgia
BibTeX
@inproceedings{BUT105978,
  author="Alisa {Zhila} and Wen-tau {Yih} and Christopher {Meek} and Tomáš {Mikolov} and Geoffrey {Zweig}",
  title="Combining Heterogeneous Models for Measuring Relational Similarity",
  booktitle="Proceedings of NAACL-HLT 2013",
  year="2013",
  pages="1000--1009",
  publisher="Association for Computational Linguistics",
  address="Atlanata, Georgia",
  isbn="978-1-937284-47-3",
  url="http://www.aclweb.org/anthology/N/N13/N13-1120.pdf"
}
Projekty
Výzkum informačních technologií z hlediska bezpečnosti, MŠMT, Institucionální prostředky SR ČR (např. VZ, VC), MSM0021630528, zahájení: 2007-01-01, ukončení: 2013-12-31, řešení
Výzkumné skupiny
Pracoviště
Nahoru