Detail výsledku

The de Groot dual for general collections of sets

KOVÁR, M. The de Groot dual for general collections of sets. In Proceedings of the Dagstuhl Seminar 04351 - Spatial Representation: Discrete vs. Continuous Computational Models. Schloss Dagstuhl, Deutschland: IBFI Schloss Dagstuhl, 2004. no. 04351, 8 p.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

A topology is de Groot dual of another topology, if it has a closed base consisting of
all its compact saturated sets. Until 2001 it was an unsolved problem of J. Lawson and M. Mislove
whether the sequence of iterated dualizations of a topological space is finite. In this paper we
generalize the author's original construction to an arbitrary family instead of a topology. Among
other results we prove that for any family $\C\subseteq 2^X$ it holds $\C^{dd}=\C^{dddd}$. We also
show similar identities for some other similar and topology-related structures.

URL
Rok
2004
Strany
8
Sborník
Proceedings of the Dagstuhl Seminar 04351 - Spatial Representation: Discrete vs. Continuous Computational Models
Vydání
1
Svazek
1
Číslo
04351
Konference
Spatial Representation: Discrete vs. Continuous Computational Models
Vydavatel
IBFI Schloss Dagstuhl
Místo
Schloss Dagstuhl, Deutschland
BibTeX
@inproceedings{BUT11708,
  author="Martin {Kovár}",
  title="The de Groot dual for general collections of sets",
  booktitle="Proceedings of the Dagstuhl Seminar 04351 - Spatial Representation: Discrete vs. Continuous Computational Models",
  year="2004",
  volume="1",
  number="04351",
  pages="8",
  publisher="IBFI  Schloss Dagstuhl",
  address="Schloss Dagstuhl, Deutschland",
  url="ftp://ftp.dagstuhl.de/pub/Proceedings/04/04351/04351.KovarMartin5.Paper!.pdf"
}
Pracoviště
Nahoru