Detail výsledku

Alexandroff pretopologies for structuring the digital plane

ŠLAPAL, J. Alexandroff pretopologies for structuring the digital plane. DISCRETE APPLIED MATHEMATICS, 2017, vol. 216, no. 2, p. 323-334. ISSN: 0166-218X.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

We explore the possibility of employing Alexandroff pretopologies as structures on the digital plane Z^2 convenient for the study of geometric and topological properties of digital images. These pretopologies are known to be in one-to-one correspondence with reflexive binary relations so that graph-theoretic methods
may be used when investigating them. We discuss such Alexandroff pretopologies on Z2 that possess a rich variety of digital Jordan curves obtained as circuits in a natural graph with the vertex set Z2. Of these pretopologies, we focus on the minimal ones and study their quotient pretopologies on Z2 which are shown
to allow for various digital Jordan curve theorems. We also develop a method for identifying Jordan curves in the minimal pretopological spaces by using Jordan curves in one of their quotient spaces. Using this method, we conclude the paper with proving a digital Jordan curve theorem for the minimal pretopologies.

Klíčová slova

Digital plane, Jordan curve, Alexandroff pretopology, quotient pretopology

URL
Rok
2017
Strany
323–334
Časopis
DISCRETE APPLIED MATHEMATICS, roč. 216, č. 2, ISSN 0166-218X
Vydavatel
Elsevier
Místo
Nizozemsko
DOI
UT WoS
000390504100002
EID Scopus
BibTeX
@article{BUT125480,
  author="Josef {Šlapal}",
  title="Alexandroff pretopologies for structuring the digital plane",
  journal="DISCRETE APPLIED MATHEMATICS",
  year="2017",
  volume="216",
  number="2",
  pages="323--334",
  doi="10.1016/j.dam.2016.06.002",
  issn="0166-218X",
  url="https://ac.els-cdn.com/S0166218X16302670/1-s2.0-S0166218X16302670-main.pdf?_tid=b5db0aee-e1e1-11e7-b51a-00000aab0f02&acdnat=1513374708_82e3d74b75420ea8adca800b18dc4e43"
}
Pracoviště
Nahoru