Detail výsledku

Learning document representations using subspace multinomial model

KESIRAJU, S.; BURGET, L.; SZŐKE, I.; ČERNOCKÝ, J. Learning document representations using subspace multinomial model. In Proceedings of Interspeech 2016. San Francisco: International Speech Communication Association, 2016. p. 700-704. ISBN: 978-1-5108-3313-5.
Typ
článek ve sborníku konference
Jazyk
anglicky
Autoři
Abstrakt

Subspace multinomial model (SMM) is a log-linear model andcan be used for learning low dimensional continuous representationfor discrete data. SMMand its variants have been used forspeaker verification based on prosodic features and phonotacticlanguage recognition. In this paper, we propose a new variantof SMM that introduces sparsity and call the resulting modelas `1 SMM. We show that `1 SMM can be used for learningdocument representations that are helpful in topic identificationor classification and clustering tasks. Our experiments in documentclassification show that SMM achieves comparable resultsto models such as latent Dirichlet allocation and sparse topicalcoding, while having a useful property that the resulting documentvectors are Gaussian distributed.

Klíčová slova

Document representation, subspace modelling,topic identification, latent topic discovery

URL
Rok
2016
Strany
700–704
Sborník
Proceedings of Interspeech 2016
Konference
Interspeech Conference
ISBN
978-1-5108-3313-5
Vydavatel
International Speech Communication Association
Místo
San Francisco
DOI
UT WoS
000409394400145
EID Scopus
BibTeX
@inproceedings{BUT132598,
  author="Santosh {Kesiraju} and Lukáš {Burget} and Igor {Szőke} and Jan {Černocký}",
  title="Learning document representations using subspace multinomial model",
  booktitle="Proceedings of Interspeech 2016",
  year="2016",
  pages="700--704",
  publisher="International Speech Communication Association",
  address="San Francisco",
  doi="10.21437/Interspeech.2016-1634",
  isbn="978-1-5108-3313-5",
  url="https://www.researchgate.net/publication/307889473_Learning_Document_Representations_Using_Subspace_Multinomial_Model"
}
Soubory
Projekty
DARPA Jazyky s omezenými zdroji pro potenciální krizové situace (LORELEI) - Využití jazykové informace pro situační povědomí (ELISA, University of Southern California, zahájení: 2015-09-01, ukončení: 2020-03-31, ukončen
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru