Detail výsledku

Convergence Optimization of Backpropagation Artificial Neural Network Used for Dichotomous Classification of Intrusion Detection Dataset

HOMOLIAK, I.; BREITENBACHER, D.; HANÁČEK, P. Convergence Optimization of Backpropagation Artificial Neural Network Used for Dichotomous Classification of Intrusion Detection Dataset. Journal of Computers, 2017, vol. 12, no. 2, p. 143-155. ISSN: 1796-203X.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Homoliak Ivan, doc. Ing., Ph.D., UITS (FIT)
Breitenbacher Dominik, Ing.
Hanáček Petr, doc. Dr. Ing., UITS (FIT)
Abstrakt

There are distinguished two categories of intrusion detection approaches utilizing machine learning according to type of input data. The first one represents network intrusion detection techniques which consider only data captured in network traffic. The second one represents general intrusion detection techniques which intake all possible data sources including host-based features as well as network-based ones. The paper demonstrates various convergence optimization experiments of a
backpropagation artificial neural network using well know NSL-KDD 1999 dataset, and thus, representing the general intrusion detection. Experiments evaluating usefulness of stratified sampling on input dataset and simulated annealing employed into the backpropagation learning algorithm are performed. Both techniques provide improvement of backpropagation's learning convergence as well as classification accuracy. After 50 training cycles, classification accuracy of 84.20% is achieved when utilizing stratified sampling and accuracy of 86.5% when both stratified sampling and simulated annealing are used. In contrast, the backpropagation by itself reaches only 76.63% accuracy. Comparing to state-of-the-art work introducing the NSL-KDD dataset, there is achieved accuracy higher about 4.5%.

Klíčová slova

artificial neural network, backpropagation, data mining, intrusion detection

URL
Rok
2017
Strany
143–155
Časopis
Journal of Computers, roč. 12, č. 2, ISSN 1796-203X
DOI
UT WoS
000384404900006
BibTeX
@article{BUT133490,
  author="Ivan {Homoliak} and Dominik {Breitenbacher} and Petr {Hanáček}",
  title="Convergence Optimization of Backpropagation Artificial Neural Network Used for Dichotomous Classification of Intrusion Detection Dataset",
  journal="Journal of Computers",
  year="2017",
  volume="12",
  number="2",
  pages="143--155",
  doi="10.17706/jcp.12.2.143-155",
  issn="1796-203X",
  url="http://www.jcomputers.us/vol12/jcp1202-06.pdf"
}
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Spolehlivost a bezpečnost v IT, VUT, Vnitřní projekty VUT, FIT-S-14-2486, zahájení: 2014-01-01, ukončení: 2016-12-31, ukončen
Pracoviště
Nahoru