Detail výsledku

Relation-induced connectedness in the digital plane

ŠLAPAL, J. Relation-induced connectedness in the digital plane. Aequationes Mathematicae, 2018, vol. 2018, no. 95, p. 75-90. ISSN: 0001-9054.
Typ
článek v časopise
Jazyk
anglicky
Autoři
Abstrakt

We introduce and discuss a connectedness induced by n-ary relations (n > 1 an integer) on their underlying sets. In particular, we focus on certain n-ary relations with the induced connectedness allowing for a definition of digital Jordan curves. For every integer n > 1, we introduce one such n-ary relation on the digital plane Z2 and prove a digital analogue of the Jordan curve theorem for the induced connectedness. It follows that these n-ary relations may be used as convenient structures on the digital plane for the study of geometric properties of digital images. For n = 2, such a structure coincides with the (specialization order of the) Khalimsky topology and, for n > 2, it allows for a variety of Jordan curves richer than that provided by the Khalimsky topology.

Klíčová slova

n-Ary relation, Connectedness, Digital plane, Khalimsky topology, Jordan curve

Rok
2018
Strany
75–90
Časopis
Aequationes Mathematicae, roč. 2018, č. 95, ISSN 0001-9054
DOI
UT WoS
000419962100005
EID Scopus
BibTeX
@article{BUT143013,
  author="Josef {Šlapal}",
  title="Relation-induced connectedness in the digital plane",
  journal="Aequationes Mathematicae",
  year="2018",
  volume="2018",
  number="95",
  pages="75--90",
  doi="10.1007/s00010-017-0508-5",
  issn="0001-9054",
  url="https://www.fit.vut.cz/research/publication/11754/"
}
Soubory
Projekty
IT4Innovations excellence in science, MŠMT, Národní program udržitelnosti II, LQ1602, zahájení: 2016-01-01, ukončení: 2020-12-31, ukončen
Výzkumné skupiny
Pracoviště
Nahoru